• 제목/요약/키워드: cobalt oxide graphene composites

검색결과 4건 처리시간 0.019초

Preparation and capacitance behaviors of cobalt oxide/graphene composites

  • Park, Suk-Eun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.130-132
    • /
    • 2012
  • In this study, cobalt oxide ($Co_3O_4$)/graphene composites were synthesized through a simple chemical method at various calcination temperatures. We controlled the crystallinity, particle size and morphology of cobalt oxide on graphene materials by changing the annealing temperatures (200, 300, $400^{\circ}C$). The nanostructured $Co_3O_4$/graphene hybrid materials were studied to measure the electrochemical performance through cyclic voltammetry. The $Co_3O_4$/graphene sample obtained at $200^{\circ}C$ showed the highest capacitance of 396 $Fg^{-1}$ at 5 $mVs^{-1}$. The morphological structures of composites were also examined by scanning electron microscopy and transmission electron microscopy (TEM). Annealing $Co_3O_4$/graphene samples in air at different temperatures significantly changed the morphology of the composites. The flower-like cobalt oxides with higher crystallinity and larger particle size were generated on graphene according to the increase of calcination temperature. A TEM analysis of the composites at $200^{\circ}C$ revealed that nanoscale $Co_3O_4$ (~7 nm) particles were deposited on the surface of the graphene. The improved electrochemical performance was attributed to a combination effect of graphene and pseudocapacitive effect of $Co_3O_4$.

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan;Choi, Wooyeol;Kim, Youbin;Lee, Chanyong;Jun, Yongseok;Kim, Junhee
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.313-320
    • /
    • 2019
  • In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Development of Cobalt Sulfide-graphene Composite for Supercapacitor Applications

  • Jana, Milan;Samanta, Pranab;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas;Lee, Joong Hee
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.167-172
    • /
    • 2016
  • $Co_9S_8/reduced$ graphene (CSRG) has been prepared by a facile two step hydrothermal method and used as a supercapacitor electrode material. It is anticipated that the $Co_9S_8$ and reduced graphene oxide (RGO) would serve as a spacer material to each other to stop the agglomeration and simultaneous contribution of electrical double layer capacitance (RGO) and pseudocapacitance ($Co_9S_8$) would provide high electrochemical properties. The chemical analysis has been done by Fourier transform infrared spectroscopy and the morphology is characterised by field emission scanning electron microscopy. CSRG shows a high electrical conductivity of $98S\;m^{-1}$. The symmetric supercapacitor shows a specific capacitance of ${\sim}728F\;g^{-1}$ with a current density of $2A\;g^{-1}$. CSRG also showed an energy density of $25.2Wh\;kg^{-1}$ with a power density of $1000W\;kg^{-1}$.