• Title/Summary/Keyword: coating weight

Search Result 449, Processing Time 0.033 seconds

Coating deviation control in traverse direction in a continuous galvanizing line

  • Yoo, Seung-Ryeol;Choi, Il-Seop;Kim, Sang-Jun;Park, Han-Ku;Kwak, Young-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.323-327
    • /
    • 1995
  • A new air knife system for coating thickness control in hot dip galvanizing process had been developed and installed on the CGL in Pohang Steel Works, POSCO. This new system consists of air knives with remotely adjustable nozzle slot and an automatic control system which can control both longitudinal and traverse coating deviations. Based on the optimal control algorithm, a traverse coating deviation control was designed. The controller controls the lip profile of the air knives with flexible structure according to the deviation of coating weight. From the measured values which are dependent on the strip width, the lip gaps are calculated with optimal algorithm and the model of the coating deviation. Time delay between knives and a coating thickness gauge is solved by the Smith Predictor.

  • PDF

A Study on Carbonation Resistance of Concrete Using Surface-coated Lightweight Aggregates (표면코팅된 경량골재를 사용한 콘크리트의 탄산화 저항성에 관한 연구)

  • Eom, In-Hyeok;Jeong, Euy-Chang;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • The purpose of this study is to investigate the mechanical properties and carbonation resistance of concretes using lightweight aggregate coated surface finishing materials. To evaluate the mechanical properties and carbonation resistance of concrete, slump, air amount, air-dried unit volume weight, compressive strength, and carbonation depth are tested. In terms of the unit volume weight of concrete, air-dried unit volume weight of concrete using coating lightweight aggregate was measured as $1,739{\sim}1,806kg/m^3$. When using coating aggregate, compressive strength of concrete at 28 days was measured as much as 82.7~95.9% of the compressive strength using non-coating aggregate. It is found that compressive strength tends to decrease with coating lightweight aggregate. However, all concretes using coating lightweight aggregate except O-LWAC satisfied the criteria for 28-day compressive strength suggested in KS. The measurement of carbonation depth when the water-repellent agent was used found that carbonation depth was reduced by as much as 2.6~6.1%. On the other hand, when using polymer waterproof agent, carbonation depth was reduced by as much as 8.6~12.0%. Consequently, to improve carbonation resistance, polymer waterproof agent was more effective than water-repellent agent. In particular, epoxy showed the most outstanding performance.

Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films (SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성)

  • Shim, Hyun-Bo;Suh, Chang-Min;Kim, Jong-Hyoung;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

Study of Corrosion-Induced Failure Mechanisms of Epoxy Coated Reinforcing Steel (Parts I and II)

  • Lee, Seung-kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.396-401
    • /
    • 1995
  • Epoxy coated reinforcing steels (ECRs) were acquired from ten sources and coatings from each source were initially characterized in terms of defects, thickness, solvent extraction weight loss and hardness. Testing involved exposure in three aqueous solutions at elevated temperature (8$0^{\circ}C$) and in chloride-contaminated concrete slabs under outdoor exposure, It was found that the density and size of coating defects was the promary factor affecting ECR performance. The equivalent circuit analysis using electrochemical impedance spectroscopy (EIS) data indicated that the impedance response for well-performing ECR specimens showed no signs of active degradation at the interface although diffusional processes similar to those noted for poorly performing bars occurred here. Experimental results also indicated a relationship between corrosion behavior and bar source. Weight loss upon solvent extraction correlated with impedance reduction from hot water exposure. Coating defects during most of the tests, especially in high pH solutions containing chloride ions. ECRs with excessive coating defects, either initially present or ones which developed in service, performed poorly in every test category regardless of source. Forms of coating failure were extensive rusting at defects, blistering, wet adhesion loss, cathodic delamination, underfilm corrosion and coating cracks. These occurred sequentially or concurrently, depending on the condition of the ECR and nature of the environment

  • PDF

Hydroxyapatite Coating on Ti Plate by a Dipping Method (침적법에 의한 수산화아파타이트 코팅 금속재의 기초적 연구)

  • Lee, Jun-Hui;Kim, Seok-Yeong;Kim, Yeong-Gon;Lee, In-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.217-222
    • /
    • 1997
  • Hydroxyapatite(HA)-coated metal composites were made by the dipping method. The specimen substrates were Ti plates with a thickness of 2 mm. The HA coating was carried out in HA-sol for 1 min by the dipping method. The concentration of HA-sol for the coating ranged from 3.28 to 9.99 wt%. Excellent coating was observed on Ti substrate dipped once in 9.99 wt% sol. Preparation of Ti plates by sandblasting provided the better environment for coating HA on Ti surface than non-treated surface. As the concentration of sol increased, the weight change and the coating thickness increased. Above 7 wt% sol, they increased sharply.

  • PDF

Effects of Surface Modification with Amino Terminated Polydimethylsiloxane(ATP) on the Corrosion Protection of Epoxy Coating

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • An epoxy coating was designed to give a hydrophobic property on its surface by modifying it with three types of Amino Terminated Polydimethylsiloxane (ATP), and then effects of the modification on the structure, surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified epoxy coating were examined using FT-IR spectroscopy, hydrothermal cyclic test, and impedance test. The surface of epoxy coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between epoxy and modifier by the modification. The phase separation tendency is more appreciable when modified by ATP with higher molecular weight ATP at higher content. Water transport behavior of the modified epoxy coating decreased more in that with higher hydrophobic surface property. The resistance to localized corrosion of the modified epoxy coated carbon steel was well agreed with its water transport behavior and hydrophobic tendency.

Cavitation Damage Behavior of Inconel 625 Coating Layer by Arc Thermal Spraying Method in Sea Water (아크 용사법을 이용한 Inconel 625 코팅 층의 해수 내 캐비테이션 손상 거동)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.349-353
    • /
    • 2015
  • In this paper, arc thermal spray coating was conducted onto the SS400 steel using Inconel 625 wires in order to improve the durability of marine steel structures, and then investigated cavitation damage behavior of Inconel 625 coating layer in sea water. For the Inconel 625 coating layer, surface hardness appeared similar to that of existing high velocity oxy-fuel coating technology with 380~480 HV, but the porosity of about 6 % was larger relatively. During the cavitation experiment, pit damages were originated and grown at the rough surface and pore defect area of Inconel 625 coating layer. And, after the 72 hours of experimental time, weight loss of Inconel 625 coating layer exhibited gradually increasing tendency due to surface damage effect of the undercut.

Application of Coating Thickness Control System (도금 두께 제어시스템의 개발 적용)

  • Choi, Il-Seop;Yoo, Seung-Ryul;Park, Han-Ku;Kwak, Young-Woo;Kim, Sang-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.892-894
    • /
    • 1995
  • This paper deals with developmeant and application of coating thickness control system in hot dip galvanizing process. According to the line conditions, such as line speed, strip size and target coating weight, a predictive preset model sets the initial oprating conditions. Referring the zine coating informations from the gauge, mean coating value controller adjusts the chamber pressure and horizontal distance between strip and air knife, while coating deviation controller adjusts the lip gap profile of the air knife. All adaptive gains are interactively calculated by numeric models based on the theoretical analysis. The operating result with this system effectively reduces the coating deviation in transverse direction as well as in longitudinal direction.

  • PDF

Applying Edible Coating Materials for Extending Storage Life of Peeled-Garlic (가식성 코팅용액을 이용한 박피마늘의 저장성 증대)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.377-385
    • /
    • 2015
  • This study was conducted to increase the shelf life of peeled-garlic by edible coating material such as carboxymethyl cellulose(CMC) with sodium benzoate, citric acid and lecithin. Peeled-garlic were stored in a storage chamber at $25^{\circ}C$ and were taken at regular intervals for analysis. The changes in weight loss, colour change, browning, decaying loss and texture of the coated samples with storage time were investigated in comparison with the uncoated samples to determine the delay in the deterioration time of the samples. The coatings contributed to a lower reduction in weight loss. The coatings decreased the browning and decaying loss loses in comparison to the uncoated peeled-garlic. It was possible to extend the storage period with lower weight loss until 32 days by coating peeled-garlic surfaces with emulsions containing CMC. It was found that the emulsion prepared using the mixture of lecithin, CMC, citric acid, sodium benzoate and water was suitable for the coating of peeled-garlic.

Preparation of Electrolyte Thin Film for Anode Support Type Solid Oxide Fuel Cells by Electrophoretic Deposition and Dip-Coating (전착법과 담금법에 의한 음극지지형 SOFC 지르코니아 전해질막 제조)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.791-798
    • /
    • 1999
  • The preparation method of yttria-stabilized zirconia(YSZ) thin film for an anode support type solid oxide fuel cell(SOFC) by electrophoretic deposition(EPD) and dip-coating was studied. And the difference in both preparation method was investigated through basic understanding of processing parameters which may significantly affect weight microstruxcture and defect of film. In dip-coating the thickness of film increased with time until 30 s and then the weight of film decreased with time due to particle falling off from the coagulated film. In EPD although the weight of film increased with time and applied constant-current sagging of the film was observed when the applied current was less that 0.035 mA/$cm^2$ and more than 120 s. Since YSZ thin film by EPD on porous substrate was dense smooth and homogeneous it was expected to be suitable for the electrolyte of an anode support type SOFC.

  • PDF