• Title/Summary/Keyword: coating layer

Search Result 2,279, Processing Time 0.027 seconds

A Study on the high temperature oxidation behavior of zirconia plasma coatings on Haselloy X (Zirconala 용사된 Hastelloy X의 고온산화거동)

  • 김재철;신억균;박영규;최시경;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.285-297
    • /
    • 1997
  • Finned segment, with which are lined inner wall of the turbine combustors, are subject to severe degradation when they are exposed to a hostile environmment at elevated temperature. To protect the finned segment from this environment and to maintain good mechanical properties of components at high temperature, they are preferred to be coated. The most governing factor for the durability of coatings used in the high temperature is the microstructure of coatings; these are splat from, distibution of microcacks, size and distribution of pores, thickness of coating layer, adhesion between coating layer, and oxidation of band coating. In this study, based on the evaluation of the imported finned segment, new finned segment segment was manufactured with optimum plasma spraying parameters, and their properties were examined. Using $ZrO_2(8wt$Y_2O_3)$,/TEX> powder for ceramic coating and 67Ni-22Cr-10Al-0.5Y mixing powder for bond coating, thickness of ceramic and bond coating layer were varied in order to find optimum condition, the results showed that B2T4(bond coating : 100~250$\mu\textrm{m}$, ceramic coating : 250~300$\mu\textrm{m}$) was the best among the specimens tested. Compared to the imported finned segment, B2T4 has better bond strength, hardness, and isothermal and cyclic oxidation resistance.

  • PDF

The influence of spraying conditions to the coating layer properties of Fe-Cr-Ni-Mo-Si-B alloy using the HVOF (HVOF를 이용한 Fe-Cr-Ni-Mo-Si-B계 고성능 합금 용사층의 특성에 미치는 용사조건의 영향)

  • 권기봉;조대형;장영권;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This study was performed to investigate the influence of spraying condition to the coating layer properties of Fe-Cr-Ni-Mo-Si-B alloy using the HVOF. The investigations, such as thickness measurement, surface roughness, hardness, friction coefficient, resistance of corrosion were carried out. Matrix is prepared by gritting and coating layer is made of Fe-Cr-Ni-Mo-Si-B alloy powder using HVOF. Alumina gritting layers are superior to steel gritting layers. The less spaying distance, the more coating layer properties confirmed. The optimum spraying condition, in this study, was proved as 13inch spraying distance with feed rate 350rpm (78g/min).

Effects of Hear Teratment on the Insulation Layer of Non-oriented Silicon Steel Sheets (열처리 조건이 무\ulcorner향성 규소강판의 절연피막에 미치는 영향)

  • 유영종;신정철
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.109-117
    • /
    • 1989
  • The effect of heft treatment on the characteristic properties of insulation layer is studied for two kinds of non-oriented silicon steels, which were insulation-coates with various kinds of inorganic and inorganic-organic complex coating solutions. In addition, how the carbon contained in the insulation layer would affect the carbon content and the magnetic properties of the steel substrates is examined. Lower temperature heat treftment ($480^{\circ}C$ for 0.5hr) is found to render morw favorable surface qualities, wheras higher temperature heat treatment ($790^{\circ}C$ for 2hr) better core loss due to grin growt occurred during the heat treatment. Decarburization of the steel substrate is also found unaffectrd by the presence of carbon in the insulation layer.

  • PDF

Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture (알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구)

  • Park, Jin Soo;Lee, Hyo Ryong;Lee, Beom Ho;Park, Joon Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.226-232
    • /
    • 2015
  • High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.

Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet (알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향)

  • Yoonje Sung;Donggyu Kim;Jungi Seo;Kyunghyun Han;Beomki Hong;Kangmin Kim;Seounguk Heo;Seonghyun Park;Jae-Taek Im;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

The Characteristics of Coating Layer with the Thermochromic and the Photochromic Pigment (시광안료와 시온안료를 사용한 도공층의 특성)

  • Kim, Sun-Kyung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.11-16
    • /
    • 2011
  • This study was aimed to apply thermochromic and photochromic pigments to coating color and to develop a speciality functional coated layer. Two special pigments were added to a conventional coating color. The effects of the special pigments on coating color properties such as water rerention, low-shear viscosity were evaluated. Also the color changes of coated paper was observed under various circumstances. The results showed that the special pigments didn't influence the coating color properties. The coated paper with the special pigments showed four different colors, under various circumstances, implying that thermochromic and photochromic pigments can be used to produce a security paper.

Coating technique for use with remote measurement system at elevated temperatures (고온에서 원거리 측정 시스템을 활용하기 위한 코팅기술의 응용에 관한 연구)

  • 서창민;남승훈;이해무;김용일;김동석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.164-169
    • /
    • 2000
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurements at elevated temperatures because of the oxide layer on the specimen surface. Since TiAlN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAlN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at 538$^{\circ}C$, using specimens of 1Cr-1Mo-0.25V steel. From the experimental results, it was found that the mechanical properties of the TiAlN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAlN and Cr coated layer had hardly any influence on the fatigue crack propagation.

  • PDF

Contact Damage and Fracture of Poreclain/Glass-Infiltrated Alumina Layer Structure for Dental Application (치아 응용을 위한 /유리침윤 알루미나 이중 층상구조의 접촉손상 및 파괴)

  • 정연길;여정구;최성설
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1257-1265
    • /
    • 1998
  • Hertzian contact tests were used to investigate the evolution of fracturedamage in the coating layer as functions of contact load and coating thickness by studying crack patterns in porcelain on glass-infiltrated alumina bilayer system conceived to simulate the crown structure of a tooth. Cone cracks initiated at the coating top surface without delamination at interface and crack propagation to substrate. Preferentially the cracks made multi-cracks at the coating top surface rather than proceeding to interface. The cracks were highly stabilized with wide ranges between the loads to initiate first cracking and to cause final failure im-plying damage-tolerant capability. Finite element modelling was used to evaluate the stress distribution. Maximum tensile stress were responsible for the cracking at the coating layer and had a profound influence on the crack pattern and fracture damage in the layered structure materials.

  • PDF

Application of Coating Technique for Measurement of Elevated Temperature Fatigue Crack Growth Behavior (고온 피로균열 성장거동 관찰을 위한 코팅기술의 응용)

  • 남승훈;김용일;서창민;김동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.60-66
    • /
    • 2002
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurement at elevated temperatures because of the oxide layer on the specimen surface. Since TiAIN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAIN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at $538^{\circ}C$. The test material was 1Cr-1Mo-0.25V steel which is widely used as a turbine rotor material. From the experimental results, it was found that the mechanical properties of the TiAIN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAIN and Cr coated layer had hardly any influence on the fatigue crack propagation.

A study on the growth rate of the carbide layer formed by the reactive deposition (반응석출법에 의한 탄화물 피복속도에 관한 연구)

  • 남기석;변응선;이구현;김도훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.303-311
    • /
    • 1994
  • In this study, the factors, such as coating temperature T(K), reaction time t(sec) and mobile carbon content $C^*$ (wt%) of steels affecting, the growth rate of carbide layer were investigated in the reactive deposition and diffusion coating using the fluidized bed. From the results, the coating thickness d(cm) can be expressed by an equation. d=$C^*$$(KT)^{1/2}$, where K=K$\circ$exp(~Q/RT), KTEX>$\circ$ = 1.4$\times$$10^{-2}cm^{-2}$/sec, and Q=46Kcal/ mol. It was in a good aggrement with the experimental results, reguardless of the diffusion coating method and the carbide layer. Therefore, if the mobile carbon content of carbon steels and alloyed steels is known, the thickness under coating conditions can be predicted from the previous equation.

  • PDF