• Title/Summary/Keyword: coating defects

Search Result 204, Processing Time 0.024 seconds

Improvement of the Corrosion Resistance of PVD Hard Coating/Substrate Systems - Recent Developments -

  • Jehn, Hermann A.;Kang, Sung-Goon
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.472-483
    • /
    • 1999
  • Hard coatings playa continuously increasing role in the field of tribology as well as for decorative applications. In both areas they are often also exposed to corrosive media. While especially hard nitride coatings show a high corrosion resistance for themselves, hard $coating_strate systems may suffer from a severe corrosion attack due to the defects in the coating structure (pores, pinholes) resulting from the PVD-typical film morphology. While a huge number of investigations cover the tribological properties, only limited studies deal with the corrosion behavjour of coating substrate systems and attempts are made to improve their corrosion resistance. The present paper shortly describes the corrosion mechanisms and repots characteristic examples of the system behaviour. Special emphasis is laid on recent investigations to improve the corrosion resistance by alloying, interlayers or multilayered coating structures.es.

  • PDF

Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution (3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Capping Intercrystalline Defects of Polycrystalline UiO-66 Membranes by Polydimethylsiloxane Coating (폴리다이메틸실록산 코팅을 통한 다결정성 UiO-66 분리막의 비선택적 결정립계 결함 캡핑)

  • Ik Ji Kim;Hyuk Taek Kwon
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2023
  • In general, the presence of non-selective intercrystalline (grain boundary) defects in polycrystalline metal-organic framework (MOF) or zeolite membranes, which are known to be ca. 1 nm in size, causes lower membrane performance (selectivity) than the intrinsically expected. In this study we show that applying a thin polymeric coating of polydimethylsiloxane (PDMS) on a polycrystalline MOF membrane is effective to cap the non-selective intercrystalline defects and therefore improve membrane performance. To demonstrate the concept, first, polycrystalline UiO-66, one of Zr-based MOFs, membranes were prepared by an in-situ solvothermal growth. By controlling membrane growth condition with respect to growth temperature, we were able to obtain polycrystalline UiO-66 membranes at 150 ℃ with intercrystalline defects of which the quantity is not significant, so it can be plugged by the suggested PDMS deposition. Second, their performances were compared before and after the PDMS deposition. As expected, the PDMS deposition ended up with a noticeable increase in CO2/N2 ideal selectivity from 6 to 14, indicating successful intercrystalline defect plugging. However, the enhancement in CO2/N2 selectivity was accompanied by a significant reduction in CO2 permeance from 5700 to 33 GPU because the PDMS deposition not only plugs defects but also forms a continuous coating on membrane surface, adding an additional transport resistance.

Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구)

  • Yong Hyeon Kim;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.242-251
    • /
    • 2023
  • The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.

Evaluation of Durability on MMA-Modified Polymer Paste for Coating materials (코팅재로서 MMA 개질 폴리머 페이스트의 내구성능 평가)

  • Yeon, Kyu-Seok;Lee, Hyun-Jong;Joo, Myung-Ki;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.807-810
    • /
    • 2005
  • In this study, MMA-modified paste of coating material for protecting the concrete structures was developed. The coating material was applied to cement concrete specimens by brush, roller and spray in each of which one, two and three layers to survey, by the cold-hot iterative test, the neutralization test, the chloride ion permeation test and the ante-abrasion test, the affect of painting methods and layers influencing on the durability of coating material. Results of the cold-hot iterative test showed that, regardless of the painting methods and layers, the defects such as crack or fuzz on surface were not produced. As the number of painting layers increased, the neutralization prevention as well as the chloride ion permeation prevention effects were increased. On the other hand, no difference was found between the painting methods. Reducing weight by abrasion of polymer paste coating material was $20\%$ comparing to that of cement mortar.

  • PDF

A Study on Detecting Dross in Coating Layer on Hot-dip Galvanizing Steels (용융아연 도금강판의 도금층에 잔류한 드로스 검출에 관한 연구)

  • 김유철;이호종
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.466-474
    • /
    • 2003
  • To develop a method of detecting dross in coating layer on hot-dip galvanizing steel, chemical etching behavior of the artificial coating layers with top and bottom dross were investigated. After chemical etching with the mixture of picric acid and sodium thiosulfate, each of the top and bottom dross take its distinct color, and alloy layer in coating is also observed. Defects in the coating layers of HGI(hot rolled galvanized iron), CGI(continuous galvanized steel sheet) and GA(galvannealed steel) were analysed, and methods of dross detection which can be applied to inspection process in manufacture were suggested.

On the Surface Defect Analysis of an Aluminum Tube for an OPC Drum using n SEM and EDX (SEM/EDX를 이용한 OPC 드럼용 Al 튜브의 표면결함 분석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.143-148
    • /
    • 2007
  • The surface defects of an aluminum tube for an OPC drum have been analyzed using a scanning microscopy(SEM) and an energy dispersive X-ray analyze.(EDX). The SEM/EDX system, which may provide good information on the surface defects and their distributions, provides an optical diameter of an impurity and a chemical composition. These are strongly related on the coated film thickness and quality of an OPC drum, which is a key element of a toner cartridge for a laser printer. The experimental results show that the local deformations, scratch wear, and flaws are produce the non-uniform coating layers, which may be removed by a manufacturing process of an aluminum tube. The major parameters on the coating quality of an OPC drum are the impurities of an aluminum tube such as silicon, oxygen, calcium, carbon, sulphur, chlorine, and others. These impurities may be removed by an ingot molding, extrusion and drawing, quality control, and packing processes with a strict manufacturing technology.

Applicability Study of 2-pass Laser Welding on Galvanized Steel Sheets (아연도금강판 겹치기 용접부에 대한 2패스 레이저용접 적용성 연구)

  • Ahn, Young-Nam;Kang, Minjung;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.55-61
    • /
    • 2016
  • During laser overlap welding of galvanized steel sheets, explosion of weld pool by the high pressure zinc vapor induces weld defects like porosity and blowhole. In this study, laser 2-pass welding was implemented to prevent the weld defects. Through the 1st pass welding, zinc layers on the faying surfaces were removed when proper heat input was applied. Excessive heat input could result in explosion even during the 1st pass welding and insufficient heat input could not remove enough region of zinc layer for the 2nd pass welding. Coating weights of $45g/m^2$ and $60g/m^2$ were considered and for both cases sound welds without weld defects could be achieved. In spite of 2-pass welding, softening of weld and heat affected zone was not observed and Zn coating was not diluted into the weld metal.

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating (플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동)

  • Kang, Sang-Woon;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.229-234
    • /
    • 2016
  • In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.