• 제목/요약/키워드: coating defect

검색결과 118건 처리시간 0.023초

TiN 코팅된 지대주 나사의 반복 착탈 후 표면 변화와 적합도에 관한 연구 (SURFACE CHANGE AND FIT OF TIN-COATED ABUTMENT SCREW AFTER REPEATED CLOSING AND OPENING)

  • 김종남;정재헌;김희중
    • 대한치과보철학회지
    • /
    • 제45권1호
    • /
    • pp.119-130
    • /
    • 2007
  • Statement of problem: A few dry lubricants were applied to abutment screws for the improvement of joint stability. Purpose: The purpose of this study was to evaluate the surface change and fit of TiN-Coated abutment screw through the examination of tested screws in the field emission scanning electron microscope(FE-SEM;Netherland, Phillips co., model:XL 30 SFEG) after repeated closing and opening. Materials and method: Titanium(3i/implant Innovations Inc, USA) and Gold-Tite abutment screws(3i/implant Innovations Inc, USA) were selected for Group A and C respectively. TiN coated titanium abutment screws were also divided into two groups, Group B and D. Abutment screws of each group and the fit of abutment screw/implant fixture/abutment were observed on FE-SEM after repeated closing and opening test respectively. Results: 1. The abutment screws of TiN coated groups(Group B and D) showed more remarkable wear resistance in the threads of the screw than those of the other group(Group A and C). 2. There were more severe wear and defect of TiN coating in Group D tightened to 32 Ncm than Group B to 20 Ncm. 3. There was no difference in the fit of abutment screw/fixture/abutment among four groups, Group A, Group B, Group C and Group D. Conclusion: Under the conditions of this study, it is suggested that TiN coating of abutment screw be clinically acceptable and be expected to reduce the risk of abutment screw loosening. TiN coating of abutment screw showed good resistance against wear and the adequate fit of abutment screw/implant fixture/abutment.

ALD-assisted Hybrid Processes for improved Corrosion Resistance of Hard coatings

  • Wan, Zhixin;Kwon, Se-Hun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.105-105
    • /
    • 2016
  • Recently, high power impulse magnetron sputtering (HIPIMS) has attracted considerable attentions due to its high potential for industrial applications. By pulsing the sputtering target with high power density and short duration pulses, a high plasma density and high ionization of the sputtered species can be obtained. HIPIMS has exhibited several merits such as increased coating density, good adhesion, microparticle-free and smooth surface, which make the HIPIMS technique desirable for synthesizing hard coatings. However, hard coatings present intrinsic defects (columnar structures, pinholes, pores, discontinuities) which can affect the corrosion behavior, especially when substrates are active alloys like steel or in a wear-corrosion process. Atomic layer deposition (ALD), a CVD derived method with a broad spectrum of applications, has shown great potential for corrosion protection of high-precision metallic parts or systems. In ALD deposition, the growth proceeds through cyclic repetition of self-limiting surface reactions, which leads to the thin films possess high quality, low defect density, uniformity, low-temperature processing and exquisite thickness control. These merits make ALD an ideal candidate for the fabrication of excellent oxide barrier layer which can block the pinhole and other defects left in the coating structure to improve the corrosion protection of hard coatings. In this work, CrN/Al2O3/CrN multilayered coatings were synthesized by a hybrid process of HIPIMS and ALD techniques, aiming to improve the CrN hard coating properties. The influence of the Al2O3 interlayer addition, the thickness and intercalation position of the Al2O3 layer in the coatings on the microstructure, surface roughness, mechanical properties and corrosion behaviors were investigated. The results indicated that the dense Al2O3 interlayer addition by ALD lead to a significant decrease of the average grain size and surface roughness and greatly improved the mechanical properties and corrosion resistance of the CrN coatings. The thickness increase of the Al2O3 layer and intercalation position change to near the coating surface resulted in improved mechanical properties and corrosion resistance. The mechanism can be explained by that the dense Al2O3 interlayer acted as an excellent barrier for dislocation motion and diffusion of the corrosive substance.

  • PDF

폴리페닐카보실란을 이용한 SiOC가 코팅된 스테인리스스틸 제조 및 이의 내부식성 특징 (SiOC Coating on Stainless Steel Using Polyphenylcarbosilane, and Its Anti-corrosion Properties)

  • 김종일;이윤주;김수룡;김영희;김정일;우창현;최두진
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.8-14
    • /
    • 2011
  • To improve the chemical stability of metal, the ceramic coatings on metallic materials have attracted interest from many researchers due to the chemical inertness of ceramic materials. To endure strong acids, SiOC coating on metal substrate was carried out by dip coating method using 20wt% polyphenylcarbosilane solution; SiC powder was added to the solution at 10wt% and 15wt% to improve the mechanical properties and to prevent cracks of the film. Thermal oxidation as a curing step was carried out at $200^{\circ}C$ for crosslinking of the polyphenylcarbosilane, and the coating samples were pyrolysized at $800^{\circ}C$ under argon to convert the polyphenylcarbosilane to SiOC film. The thicknesses of the SiOC coating films were $2.36{\mu}m$ and $3.16{\mu}m$. The quantities of each element were measured as $SiO_{1.07}C_{6.33}$ by EPMA, and it can be confirmed that the SiOC film from polyphenylcarbosilane was formed in a manner that was carbon rich. The hardness of the SiOC film was found to be 3.2Gpa through nanoindentor measurement. No defect including cracks appeared in the SiOC film. The weight loss of the SiOC coated stainless steel was within 2% after soaking in 10% HCl solution at $80^{\circ}C$ for one week. From these results, SiOC coating shows good potential for application to protect against severe chemical corrosion of stainless steel.

폴리머 시멘트 슬러리 도장철근의 인발부착 특성 (Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars)

  • 김현기;김민호;장성주;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가 (A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route)

  • 여인철;한재길;강인철
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.416-423
    • /
    • 2012
  • This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.

조선용 프라이머 코팅강판의 $CO_2$ 레이저 용접에 있어서 프라이머 코팅 조건과 갭(Gap) 간극의 영향 (Effect of Primer Coating Condition and Gap Clearance in $CO_2$ Laser Welding of Primer-coated Steel for Shipbuilding)

  • 길병래;장지연;김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.109-115
    • /
    • 2004
  • The spatter and porosity could be occurred during$CO_2$CW laser welding of Primer- coated steel for shipbuilding. This study has suggested an alternative idea by examining of weld-defect formation mechanism. The primer-coated plate induced the spatter humping bead and porosity and these are main part of the welding defect. attributed to the powerful vaporizing pressure of primer attached on the base metal The zinc of Primer has a boiling point that is the lower temperature than melting point of steel zinc vapor will build up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Therefore introducing a small gap clearance in the lap position. the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, we suggested the occurred and prevented mechanism of weld defects with searching the factor.

제올라이트 MFI 자일렌 분리막 연구 동향 (Review on Zeolite MFI Membranes for Xylene Isomer Separation)

  • 김동훈
    • 멤브레인
    • /
    • 제29권4호
    • /
    • pp.202-215
    • /
    • 2019
  • 분자체 분리막은 분자크기의 기공을 갖는 다공성 분리막으로서 크기 또는 모양을 기반으로 혼합물을 분리하며, 높은 잠재적 에너지 효율과 뛰어난 분리능으로 많은 주목을 받아왔다. 그 중, 제올라이트 MFI 분리막은 가장 오랫동안 연구된 물질 중의 하나이며, 다양한 방면으로 개발된 기술들은 이후 다른 종류의 분자체 분리막 연구에도 많은 영향을 미쳤다. 본 총설에서는, 결정성 물질인 제올라이트 MFI의 결정 생성 및 성장을 제어하여 자일렌 이성질체 혼합물에 대한 분리막의 투과도와 선택도를 향상시킨 많은 방법들을 다룬다. 씨앗결정의 형태 제어, 결정의 효과적인 이차성장법, 씨앗결정의 코팅 방법, 결정의 방향성 제어, 이종원소 도입을 통한 결정구조의 유연성 제어, 결함 관리 등, 자일렌 이성질체 분리성능의 비약적 성능 향상을 가져온 기술들을 소개한다.

다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계 (A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device)

  • 장정희;김준형;한철호
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.

Erosion Behavior of SiC Coated C/C Composites with Condition of Combustion Test

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Jae-Won
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.133-139
    • /
    • 2003
  • Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

  • PDF

용사법에 의해 제작된 금속/세라믹 경사기능 재료의 기계적 특성 (Mechanical Properties of Metal/Ceramic FGM made by Thermal Spraying Method)

  • 김영식;남기우;김현수;오명석;김귀식
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.41-48
    • /
    • 1998
  • This study was aimed at development of fabrication process of functionally graded materials(FGM), consisting of metal and ceramic by thermal spraying method. NiCrAIY/$Al_2O_3$ FGM were made by using plasma spraying onto the SS400 carbon steel substrate. And mechanical properties such as microhardness, thermal shock resistance and adhesive strength of the coating layer were investigated. Adhesive strength was evaluated by acoustic emission method. It was resulted that NiCrAIY/$Al_2O_3$ FGM made by thermal spraying method showed excellent thermal shock resistance and adhesive strength compared to the other lamellar structures of sprayed coatings and that AE is useful tool to evaluate the defect of thermal sprayed coating layer.

  • PDF