• Title/Summary/Keyword: coating blade

Search Result 77, Processing Time 0.038 seconds

Sliding Wear Behavior of Plasma-Sprayed $Al_2$O$_3$-TiO$_2$ Coating against Cemented Carbide (Al$_2$O$_3$-TiO$_2$ 플라즈마 세라믹 코팅과 초경합금간의 미끄럼 마멸특성)

  • 이병섭;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.313-318
    • /
    • 2001
  • The sliding wear behavior of Plasma-Sprayed Al$_2$O$_3$-TiO$_2$ Coating against Cemented Carbide were Investigated using a pin on disk type tester. The experiment was conducted using Al$_2$O$_3$-TiO$_2$ Coaling as pin material and Cemented Carbide as disk material and different operating conditions, at room temperature under a dry conditions. The results showed that the type B(250kw power) appeared average wear rate Is lowed than type A(80kw power). The specific wear rate of Specimen A1 Increased with normal load. But The specific wear rate of Specimen B1 decreased with normal load. Average wear rate of specimen A3, B3 are lowed than other but the sliding wear mechanism of edge were rough.

  • PDF

Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가)

  • Kim, Dae-Jin;Lee, Dong-Hoon;Koo, Jae-Mean;Song, Sung-Jin;Seok, Chang-Sung;Kim, Mun-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

A Study on the Structural Integrity of the First Stage Turbine Blade Caused by Thermal Barrier Coatings and the Cooling Design of the Nozzle (터빈 노즐 및 열차폐 코팅에 따른 고압 1 단 터빈 블레이드의 구조 건전성 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • High pressure nozzles and turbines of a gas turbine engine should be required to be operated under extreme operating conditions in order to maximize the performance. Engine manufactures have utilized nickel-base superalloys, enhanced cooling design, and thermal barrier coating techniques to overcome them and furthermore, material modeling, finite element analysis, optimization techniques, and etc. have been utilized widely for elaborate predictions. We aim to evaluate the effects on the low cycle fatigue life of the high pressure turbine blade caused by thermal barrier coatings and the cooling design of the endwall of the first stage turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and then the results were the input for the assessment of low cycle fatigue life at several critical zones.

Evaluation of the Mechanical Characteristics According to the Curvature of Thermal Barrier Coating (가스터빈 블레이드 열차폐코팅의 곡률에 따른 기계적 특성 평가)

  • Lee, Jeng-Min;Seok, Chang-Sung;Koo, Jae-Mean;Kim, Sung Hyuk;Zhen, Guo;Tao, Shen;Moon, Wonki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1427-1430
    • /
    • 2014
  • A thermal barrier coating (TBC) prevents heat directly transferring from a high-temperature flame to a substrate. The TBC system comprises a top coating and bond coating. TBC technology reduces the substrate surface temperature by about $100{\sim}170^{\circ}C$. In the TBC system, internal stress is generated by the difference in thermal expansion coefficients of the substrate and coating. The internal stress also differs according to the shape and position of the blade. In this study, finite element analysis was performed for different curvatures of coin-shaped specimens, which are commonly used for thermal fatigue tests, and the changes in internal stress of the TBC system were compared. Based on the results, the curvature at which the minimum stress occurs was derived, and the thermal stress was confirmed to increase with the difference between a given curvature and the curvature with the minimum stress.

Effects of the Damaged Axial-flow Compressor Blade on the Gas Turbine Components (축류 압축기 블레이드 손상시 터빈부품에 미치는 영향)

  • Kang, M.S.;Yun, W.N.;Kim, K.Y.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 2007
  • The ruptured blade which is rotating at high speed can damage severely the all stage compressor blades and the turbine components. If the shattered blades flow downstream inside the turbine parts, then the turbine blades and vanes can be damaged. The small parts of shattered blades which are flowed into the turbine parts pass through without any damages in the leading edge of the first stage stationary blades. Then they bump against the convex side of the leading edge of the first stage moving blades and the trailing edge of the first stage stationary blades repeatedly. The debris of shattered blades may plug the cooling holes in the turbine blades and vanes. The dent damage and the coating delamination could be also occurred by the debris of shattered blades flowed downstream inside the combustion liner and the transition piece. This paper analyzes the influence on the turbine components and the damage mechanism and characteristics in case of the damaged blade of the multiple-stage axial flow compressor.

  • PDF

Preparation and characterization of silver nanowire transparent electrodes using shear-coating (Shear-coating을 사용한 은 나노와이어 투명 전극 제조 및 특성 분석)

  • Cho, Kyung Soo;Hong, Ki-Ha;Park, Joon Sik;Chung, Choong-Heui
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.182-189
    • /
    • 2020
  • Indium tin oxide (ITO) used a transparent electrode of a photoelectric device has a low sheet resistance and a high transmittance. However, ITO is disadvantageous in that the process cost is expensive, and the process time is long. Silver nanowires (AgNWs) transparent electrodes are based on a low cost solution process. In addition, it has attracted attention as a next-generation transparent electrode material that replaces ITO because it has similar electrical and optical characteristic to ITO, it is noted as a. AgNW thin films are mainly produced by spin-coating. However, the spin-coating process has a disadvantage of high material loss. In this study, the material loss was reduced by using about 2~10 ㎕ of AgNW solution on a (25 × 25) ㎟ substrate using the shear-coating method. It was also possible to align AgNWs in the drag direction by dragging the meniscus of the solution. The electro-optical properties of the AgNW thin film were adjusted by changing the experimental parameters that the amount of AgNWs suspension, the gap between the substrate and the blade, and the coating speed. As a result, AgNW thin films with a transmittance of 90.7 % at a wavelength of 550 nm and a sheet resistance of 15 Ω/□ was deposited and exhibited similar properties to similar AgNW transparent electrodes studied by other researchers.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Deposition uniformity of 7 wt% YSZ as a thermal barrier coating with different configurational arrangement for turbine blade shape mock-up by electron beam physical vapor deposition (터빈블레이드 형상 mock-up의 기하학적 배치조건에 따른 전자빔 물리기상증착법으로 제조된 7 wt% YSZ 열차폐 코팅의 코팅 균일성)

  • Oh, Yoon-Suk;Chae, Jung-Min;Ryu, Ho-lim;Han, Yoon-Soo;An, Jong-Kee;Son, Myung-Sook;Kim, Hong-Kyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.308-316
    • /
    • 2019
  • Electron beam physical vapor deposition (EBPVD) is a conventional method to fabricate thermal barrier coating (TBC) of high temperature airfoil engine parts, such as blade etc. for its high temperature structural stability from the nature of columnar growth behavior. For the high quality of TBC by EBPVD, the structural factors, such as growth behavior, thickness uniformity and so on, should be managed to obtain the coating which satisfied the required specifications of usable level of mechanical and thermal properties. In this study, the growth behavior and structure variations of 7YSZ (7 wt% yttria stabilized zirconia) coatings with different configurational deposition parameters for the specimens which have turbine blade shape mock-up were investigated. Growth behavior of coatings were studied by comparing computational modeling of evaporation behavior with actual deposition process using e-beam source.

Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 열화 평가)

  • Koo, Jae-Mean;Seok, Chang-Sung;Kang, Min-Sung;Kim, Dae-Jin;Lee, Dong-Hoon;Kim, Mun-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature; delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature $1,151^{\circ}C$.

A Study on the Cutting Characteristics of Inconel 690 alloy (인코넬 합금의 절삭특성에 관한 연구)

  • 황경충
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.315-319
    • /
    • 1999
  • This paper has been considered on the cutting characteristics such as chip formation and surface roughness for Inconel 690 alloy with difficult-to-cut because of high toughness and strength. We have made efforts solving the problem to difficult-to-cut of Inconel by improvement of tool with TiN coating and the selection of optimum cutting condition. We used the CCD camera and the surface roughness tester to observe the chip formation and the state of machined surface by using the improved tool with diamond coating and various cutting condions. We have found that the chip formation showed the tooth shape of tooth blade and the surface roughness was very poor. but it can be better by selection of optimum cutting condition.

  • PDF