• Title/Summary/Keyword: coating amount

Search Result 588, Processing Time 0.03 seconds

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Production of Monoclonal Antibodies Specific to Korean Mistletoe pectin (KML-C) and Their Characterization (한국산 겨우살이 렉틴 (KML-C)에 대한 단일크론항체의 생산과 특성)

  • 윤택준;유영춘;강태봉;김성훈;김갑수
    • YAKHAK HOEJI
    • /
    • v.45 no.2
    • /
    • pp.180-189
    • /
    • 2001
  • We have reported that water-extracted Korean mistletoe (KM-110) had various biological activities such as antitumor and immunomodulatory activity, and the pectin fraction (KML-C) of the extract was one of major factors related to its biological functions. In this paper, we produced murine monoclonal antibody (mAb) against KML-C. The cAbs obtained were largely classified into two groups according to specificity to KML-C and ML-I, a pectin from European mistletoe. One group mAbs (9H7-D10 and 3C2-lH4) strongly reacted with KML-C, but not ML-I. In contrast, another group cAbs (8Bll-2C5, BE12-3E9 and 5E10-Fl) reacted with both KML-C and ML-1. The subisotypes of these mobs were shown to be IgGl (9H7-lD10, 3C2-lH4 and 8Bll-2C5) or IgM (8E12-3E9 and 5E10-Fl). To develop an assay system for determination of the amount of KML-C, we established the sandwich ELISA (enzyme-linked immunosorbent assay) method using these mAbs and horse radish peroxidase (HRP)-labelled cAbs. In various combinations of the cAbs for coated antibody and detection antibody, the sandwich ELISA quantitatively detected KML-C, showing the detection limit ranging from 7-5,000 ng/ml. Especially reproducibility (C.V) of the sandwich ELISA, in which 8E12-3E9 was used for coating antibody and 8Bll-2C5-HRP for detection antibody, was 4.59-5.83 in intra assay, and 3.9-9.4 in inter assay.

  • PDF

니켈-흑연 복합분말의 니켈코팅층에 미치는 코팅 촉매제의 영향

  • Kim, Dong-Jin;Jeong, Heon-Saeng;Yun, Gi-Byeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.521-528
    • /
    • 1993
  • Ni-graphi~e composite powders were prepared by reduct ion of $Ni^{++}$ from arnmoniacal nickel sulfate solution on graphite core by hydrogen gas at elevated temperature and pressure. Effect of coating catalyst. Anthraquinone $(C_6H_4COC_6H_4 CO)$, on the reduction rate and the properties of nickel layer were investigated by SEM, X-ray, size and chemical analysis. 1nduct.ion period, a time lag between the ~njection of hydrogen gas and the start of the reduction, was 22 to 70 mins and was affected by the size and amount of Anthraquinone. Kickel layer deposited on the surface of graphite core material was composed of nickel nodules whose sizes were different with vari~ ous reduction conditions. Minimum diameter of nickel nodules was about 2-3$\mu \textrm m$.

  • PDF

Binding of Vaccine and Poly(DL-lactide-co-glycolide) Nanoparticle Modified with Anionic Surfactant (음이온성 유화제로 수식된 폴리락티드/글리코리드 공중합체 나노 입자와 백신의 결합성)

  • Choi, Min-Soo;Park, Eun-Seok;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • Recently, studies on intranasal mucosa delivery of influenza vaccine have been actively developed because of lack of pain and ease of administration. We studied on preparation of nanoparticle delivery system using biodegradable polymer as a poly(DL-lactide-co-glycolide) (PLGA) and their binding characteristics with vaccine. Three kinds of PLGA nanoparticles were prepared by spontaneous emulsification solvent diffusion (SESD) method using sodium dodecyl sulfate and sodium laurate as an anionic surfactant and Lutrol F68 (polyethylene glycol-block-polypropylene glycol copolymer) as a nonionic surfactant. The 5-aminofluorescein labeled vaccine was coated on the surface of nanoparticles by ionic complex. The complexes between vaccine and nanoparticles were confirmed by change of the size. After vaccine coating on the surface of anionic nanoparticles, particle size was increased from 174 to 1,040 nm. However the size of nonionic nanoparticles was not more increased than size of anionic nanoparticles. The amount of coated vaccine on the surface of PLGA nanoparticles was $14.32\;{\mu}g/mg$ with sodium dodecyl sulfate, $12.41\;{\mu}g/mg$ with sodium laurate, and $9.47{\mu}g/mg$ with Lutrol F68, respectively. In conclusion, prepared nanoparticles in this study is possible to use as a virus-like nanoparticles and it could be accept in the field of influenza vaccine delivery system.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF

Studies on NBR/PVC polymer blend (part 2) (NBR/PVC의 polymer blend에 관(關)한 연구(硏究)(제2보(第2報)))

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.6 no.1
    • /
    • pp.71-81
    • /
    • 1971
  • The intention of this study is to investigate the properties of polymer blend, NBR/PVC vulcanizates and blending procedures such as roll-mixing temperatures and sequences for polymer blending of NBR and PVC(resin type). The results obtained are as follows: 1. The roll temperature applied for polymer blending is around $150^{\circ}C$. At this temperature region, the degradation of rubber stock, which may be caused by heat, can be minimized and mill processing in practical application in industries can also be facilitated. 2. It is obviously necessary that a small amount of plasticizers should be added to the stock for improving processibility of roll mixing and physical properties. 3. On roll-mixing sequence, it is more effective that PVC compounded with plasticizer is added to NBR milled on hot roll. 4. The vulcanizates of the blends with different degree of polymerization of PVC ale similar to one another in properties. 5. NBR/PVC(70/30) blends shows the better physical characters than eve,-made foreign latex blend except abrasion-resistance. 6. As PVC addition ratio is increased, the physical properties such as resistance to ozone, tear, heat and oil and tensile strength, modulus, hardness have also improved, on the other hand, tension set and rebound character decreased. 7. The curve of ultimate elongation have point of inflection at the ratio of $30\sim40$ part of PVC. 8. While CR is blended, the physical properties such as brittle point, rebound and resistance to oil in high temperature have improved. 9. Polymer blend of NBR and domestic PVC is applied for the industrial utility such as rubber sole and heel, electric wire cover and oil-resistant packing, coating and gasket, printing roll, film for food packing etc.

  • PDF

Preparation process of functional particles : I. Preparation of microcapsule by spray drying (기능성 미분말의 제조공정에 관한 연구 : I. 분무건조법에 의한 microcapsule 제조)

  • 정철원;허화범;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.521-531
    • /
    • 1996
  • Inorganic and inorganic/organic microcapsules were prepared by spray drying. $K_{4}SO$ and clay were used as the core and colloidal silica as the shell for the inoroganic microcapsules. Forthe inorganic/organic microcapsules were used the inorganic microcapsule which were mentioned above (core) and ethyl cellulose (shell). To characterize the prepared microcapsule for the practical use, the homogenity of surface and pore volume are the dominent factors. At the volume ratio of 0.3/0.7 of core/shell, the spherical and homogeneous surfaces of inorganic microcapsule could be synthesized. In the case of inorganic/organic microcapsules, the weitht ratio was 0.76/0.24. The pore volume of inorganic/organic microcapsules decreases more than that of inorganic microcapsule. The more the amount of shell (ethyl cellulose) in inorganic/organic microcapsules increases, the more the coating became homogeneous and the pore volume decreased.

  • PDF

Carbonylation of Bromobenzyl Bromide Catalyzed by $Co_2(CO)_8(II)$. Selective Synthesis of Alkyl(alkoxymethyl)benzoate (코발트 카르보닐 촉매에 의한 브로모벤질 브로미드의 카르보닐화 (II). 알킬(알콕시메틸)벤조에이트의 선택성 합성)

  • Shim Sang Chul;Doh Chil Hoon;Youn Young Zoo;Cho Chan Sik;Woo Byung Won;Oh Dae Hee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.90-95
    • /
    • 1991
  • A method for the selective syntheses of alkyl (alkoxymethyl)benzoates from halobenzyl halides by two steps in one pot process is described. In the first step, benzyl halide moiety is etherified with alkoxide anion in alcohol by Williamson ether process. In the second step, aryl halide moiety is carbonylated to give alkyl (alkoxymethyl)benzoate with alcohol, Na$_2$CO$_3$, CH$_3$I, and carbon monoxide (1 atm) in the presence of a catalytic amount of Co$_2$(CO)$_8$ in excellent yield.

  • PDF

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.