• Title/Summary/Keyword: coated fabric

Search Result 132, Processing Time 0.021 seconds

Physical properties of PU coated fabric with collagen (콜라겐을 첨가한 폴리우레탄 코팅직물의 물성)

  • 백천의;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.800-808
    • /
    • 1999
  • The demand for PU coated synthetic leather is increasing as a high fashion material. But it has some faults of water vapor permeability surface tacky property and static electricity. Therefore the purpose of this study was the produce of PU coated fabric added collagen with hydrophilic property and soft touch. In the PU coated fabric water vapor permeability water vaper absorption and frictional electronic voltage were investigated surface bending and compression properties were also examined by the use of KES-FB System. The followings were the results of this study. 1. There was no Cr in the collagen so that Cr was not treated in the collagen. 2. The surface and cross sectional layer of PU coated fabric with collagen were highly developed by micro porous structure. 3. The water vapor permeability of PU coated fabric was increased as collagen concentration increased. 4. The water vapor absorption of PU coated fabric was increased as collagen concentration increased. 5. The frictional electronic voltage of PU coated fabric was decreased in accordance with the increase of collagen concentration. Especially it effectively decreased by the use of only 5% collagen concentration. 6,. The bending and compression properties of PU coated fabric were increased in accordance with the increase of collagen concentration so that it became stiff. 7. The Value of MIU, SMD was decreased in accordance with the increase of collagen concentration so that the PU coated fabric became smooth.

  • PDF

The Sewability of polyurethane coated fabrics (폴리우레탄 코팅포의 봉제성능)

  • 신혜원;이정순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.350-357
    • /
    • 2001
  • In this study, seam strength, seam elongation and seam efficiency of polyurethane coated fabrics were examined under various sewing conditions using three kinds of fabrics, four kinds of sewing threads and three kinds of stitch lengths. And the sewability of polyurethane coated fabrics were evaluated by FAST system. The results were as follows: 1. Seam strength decreased with the increase of stitch length. The loop strength of sewing thread and the type of base fabric than the type of coated surface had an effect on seam strength. 2. Seam elongation also decreased with the increase of stitch length and was affected by the type of base fabric. The tensile elongation of polyurethans coated fabric had an effect on seam elongation. 3. Sean efficiency also was related to stitch length, the type of base fabric, and seam strength. The suitable seam efficiency was within 50%∼65% in which polyurethane coated fabric and sewing thread broke at the same time. Therefore PS thin and PPC thin sewing threads and 3mm stitch length were suitable to polyurethane coated fabrics. 4. The relaxation shrinkage(RS) of polyurethane coated fabric was smaller than the smallest value of control chart in FAST system. And the extensibility(E) and the shear rigidity(G) were larger than the largest value.

  • PDF

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

Polyurethane-coated Fabric for RF Welding (RF 접합용 폴리우레탄 코팅 직물)

  • Park, Jong-Cheol;Lee, Jin-Uk;Yun, Nam-Sik;;Kim, Hong-Je
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.103-104
    • /
    • 2008
  • Radio-frequency(RF) weldable polyurethane-coated fabric was prepared by knife coating of presetted and cire-finished nylon fabric using optimized coating formulation including RF-sensitive commercial polyurethane resins. The physical properties, adhesion strength, peeling strength, abrasion strength, flexibility, and hydrostatic water resistance of the prepared coated fabric were good enough to show no significant difference with regular coating. Additionally the prepared coated fabric had silky and soft touch without tackiness.

  • PDF

Properties of Silicone-coated Fabric for Membrane Treated by Oxygen Low Temperature Plasma (산소 저온 플라즈마 처리에 의한 실리콘코팅 막 구조원단의 접착특성)

  • Park, Beob;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2011
  • Silicone-coated fabric were treated by oxygen low temperature plasma to improve the adhesion. The surface of silicone-coated fabric was modified with gaseous plasma of several discharge power in the presence of oxygen gas at 1Torr pressure. Oxygen plasma treatment introduces oxygen-containing functional groups and micro-pittings on the silicone-coated fabric surface. The treated fabrics with oxygen low temperature plasma were measured by contact angle analyzer and XPS(X-ray photoelectron spectroscopy), and interfacial adhesion was measured by T-peel test. The surface of fabric was investigated by SEM photographs. The chemical and physical modification of the surface wettabillity by plasma treatment can increase the adhesion.

The Properties of Commercial Polyurethane Coated Fabrics (시판되는 폴리우레탄 코팅포의 물성)

  • 이정순;신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.8
    • /
    • pp.1346-1352
    • /
    • 1997
  • The purpose of this study was to help the consumer as well as the producer by investigating the properties such as tensile strength, extention, tear strength, wrinkle recovery, drapability, bending property, moisture regain, and shrinkage on commercial polyurethane coated fabrics. Seven commercial polyurethane coated fabrics having various base fabrics were used. The performance properties of base fabrics and polyurethane coated fabrics were measured. The relationships between base fabrics and polyurethane coated fabrics on the performance properties were identified. It was concluded that the properties of polyurethane coated fabric mainly depend on the characteristics of base fabric. Therefore the proper use of base fabric is recommended in order to improve the performance of polyurethane coated fabric.

  • PDF

The Synthesis of One-step Type Hydrophilic Non-porous Polyurethane Resin and the Physical Property of its Coated Fabric for the Garment (One-step형 친수무공형 폴리우레탄 수지 합성과 코팅 처리한 의류용 직물의 물성)

  • Yang, Sung-Yong;Kim, Hyun-Ah;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • This study surveyed on the synthesis of one-step type hydrophilic non-porous PU resin and the physical property of the coated fabric for the garment. Three kinds of chain extender such as MEG, 1,4-BD and NPG were used for the preparation of one-step type hydrophilic non-porous PU resin in order to examine the effect of chain extender on the physical properties of PU-coated fabric. And the effects of isocyanate on the physical properties of PU coated fabric were surveyed by mixing with various TDI and MDI ratios. In addition, the physical properties of the coated fabric treated with one-step type hydrophilic non-porous PU resin were examined according to the pre-treatment conditions such as cire finishing. Finally, the washing durability of the coated fabrics was assessed. The coated fabrics treated with PU resin synthesized with PEG1000, MEG and TDI/MDI (6/4) showed the best physical properties. Considering the pre-treatment conditions, best performance of hydraulic pressure, water vapor permeability, and water repellency were obtained with top roller rotation ratio of 150% under 50 ton pressure at $170^{\circ}C$.

Preparation of Yacht Sail Using High Tenacity Polyester and Its Performance Evaluation (폴리에스터 고강력사를 이용한 요트용 세일의 제조 및 성능분석)

  • Son, Hyun-Sik;Sim, Seung-Bum;Min, Mun-Hong
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • This study surveyed the preparation of 8oz coated fabric and the physical property of the coated fabric according to the treated condition for the sail yacht. And the coated fabrics were compared with the performance of overseas products for verification. Physical properties of the coated fabric treated with non-yellowing functional polyurethane resin were examined according to the treatment condition such as compression and ageing treatments. Finally, yellowing fastness to light for 60 hours was assessed. Considering the compression condition after coating, good physical property was obtained at $6kgf/cm^2$. Also, the performance of yellowing fastness was similar to performance of overseas goods.

Effect of Fabric Structural Parameters and Surface Finishing Characteristics to Water Repellency/Proofing/Vapor Permeability of Breathable Fabrics for Sportswear Clothing (직물 구조인자와 표면 가공특성이 스포츠 의류용 투습직물의 발수/방수/투습특성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.112-118
    • /
    • 2020
  • This paper examined the water repellency, water proofing and water vapor permeability of twelve types of woven fabrics for sports wear clothing. Their physical properties were compared and discussed with the fabric structural parameters and surface finishing effect. A water repellent property of 100% was obtained in the coated or laminated water repellent finished fabrics; in addition, cotton/nylon breathable composite fabrics treated with a laminated finishing and with low fabric density showed a 90% water repellency. Water proofing fabric above 6,000 mm H2O hydraulic pressure was achieved by coated or laminated finishing; however, high density fabric or medium-level coated fabrics exhibited 100% water repellent and low water proofing characteristics. Superior water vapor permeability characteristics with good water repellency and proofing properties were achieved at the 2.5 layered low density and with 0.7 - 0.9 cover factor nylon fabrics treated with hydrophilic laminated finishing. The regression analysis for examining the effects of fabric structural parameters and surface finishing such as coating and laminating to the water vapor permeability exhibited a high determination coefficient of fabric structural parameters of 63.5%; in addition,, main factors among fabric structural parameters appeared to be cover factor and fabric thickness per weight. Coating and Laminating factors exhibited determination coefficient of water vapor permeability parameters of 36.5%.

Performance Analysis Based on Bonded Surface Designs for Stitchless Welded Products

  • Kim, Keum-Wha;Choi, Hei-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.6
    • /
    • pp.583-591
    • /
    • 2012
  • This study selected three model designs used for air injection type welding clothes designed for insulation purposes and analyzed the performance of each design. The bending characteristics were analyzed in order to identify the flexibility of the welded areas; subsequently, the seam breaking strength and water pressure resistance were analyzed to identify the bonding strength. In addition, two types of waterproof fabric, polyurethane (PU) coated 2 layer and PU laminated 2 layer fabrics, were used for a performance analysis, according to fabric processing specifications. The circle type showed the highest flexibility in the terms of bending characteristics that influence wearability and were followed by the wave and the straight type. In terms of breaking strength, the straight type showed the highest breaking strength, followed by the wave and the circle type. The water pressure resistance analysis found that the wave type was superior to the straight type in terms of water pressure resistance. The wave type is deemed to be a design type suitable for maximizing performance, provided that the issue of stabilization in the welding production process is addressed. Looking at the bending characteristics of waterproof fabric for each specification, the laminating waterproof cloth outperformed the coated waterproof cloth in terms of flexibility. However, in terms of seam breaking strength, the coated waterproof cloth outperformed the laminated cloth. In contrast, the water pressure resistance of the laminated waterproof fabric was found to be higher than the coated waterproof fabric, leading to the conclusion that the bonding strength of the laminated waterproof fabric is higher than that of the coated waterproof fabric based on the assumption of injecting air.