• Title/Summary/Keyword: coastal environment change

Search Result 321, Processing Time 0.024 seconds

Depositional Environment and Distribution of Heavy Metal off the Shihwa Dam

  • Oh, Jae-Kyung
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.120-127
    • /
    • 1997
  • Depositional environment off the Shihwa Dam has been studied to investigate the change of sedimentation process and the pollution. In order to understand how the sediments are distributed, polluted and modified, depositional factors have been analyzed and compared with the previous data. Study area, located off the Shihwa Dam, was surveyed to collect 25 bottom samples and 2 cores in 1996 and echo-sounding in 1997. These sediments were analyzed for the study of the global characteristics of sediment such as grain size and organic matter. Among these samples, the selected twenty surface sediments were analyzed for the comparison with their contents of metallic elements (Al, Mn, Fe, V, Cr, Co, Ni, Cu, Zn, Cd, Pb, As). According to field and lab analysis of sediments, three sedimentological zones have been generally identified around study area; near the dam (sandy Silt), near the dike (Sand) and offshore (silty Sand) zones. Textural parameters show that the content of silt and clay is dominant near the dam excepting the dike zone of LNG Storage Base and offshore (Palmido). The total concentration of Mn, Ni, Fe, Zn and Cd in bulk sediments was increased after the construction of the dam, while the content of Mn and Cr were higher near tidal channel than in the offshore area. Meanwhile, the annual increasing pattern of some heavy metal has appeared in this area. Based on this primary study, modification of the depositional environment may be caused by the construction of the dam and LNG Storage Base. Additionally, environmental evaluation on organic/inorganic factors has been suggested for interpreting environmental changes caused by coastal development in the nearshore such as the Shihwa coastal area.

  • PDF

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Monitoring suspended sediment distribution using Landsat TM/ETM+ data in coastal waters of Seamangeum, Korea

  • Min Jee-Eun;Ryu Joo-Hyung;P Shanmugam;Ahn Yu-Hwan;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.340-343
    • /
    • 2004
  • Since the tide embankment construction started in 1991, the coastal environment in and around the Saemangeum area has undergone changes rapidly, there is a need for monitoring the environmental change in this region. Owing to high temporal and spatial heterogeneity of the coastal ecosystem and processes as well as the expense with traditional filed sampling at discrete locations, satellite remote sensing measurements offer a unique perspective on mapping a large region simultaneously because of the synoptic and repeat coverage and that quantitative algorithms used for estimating constituents' concentration in the coastal environments. Thus, the main objectives of the present study are to analyze the retrieved Suspended Sediment (SS) pattern to predict changes after the commencement of the tide embankment construction work in 1991. This is accomplished with a series of the Landsat TM/ETM+ imagery acquired from 1985-2002 (a total of 18 imageries). Instead of a simple empirical algorithm, we implement an analytical SS algorithm, developed by Ahn et al. (2003), which is especially developed for estimating SS concentration (SSC) in Case-2 waters. The results show that there is a significant change in SS pattern, which is mainly influenced by the tide and tidal height after the construction of the embankment work. As the construction progressed, the distribution pattern of SS has greatly changed, and the rate of SS concentration in the gap area of the dyke of post-construction has significantly increased.

  • PDF

Wave Tendency Analysis on the Coastal Waters of Korea Using Wave Hind-Casting Modelling (파랑후측모델링을 이용한 연안 파랑경향성 분석)

  • Kang, Tae-Soon;Park, Jong-Jip;Eum, Ho-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.869-875
    • /
    • 2016
  • The purpose of this study is to analyze the long-term wave characteristics and tendencies of coastal waters near Korea based on wave hind-casting modelling. Wave hind-casting modelling was performed with a wind data set from ECMWF (2001~2014), which provides data from 1979 to the present. The results of numerical modelling were verified with observed data collected using wave buoys installed by the Korea Meteorological Administration (KMA) and Korea Hydrographic and Oceanographic Agency (KHOA) in offshore waters. The results agreed well with observations from buoy stations, especially during event periods such as typhoons. The quantitative RMSE value was 0.5 m, which was significant. Consequently, the results of a wave tendency analysis for 14 years (2001~2014) showed an increased appearance ratio for waves of more than 2 m in height at all regional domains. The mean appearance ratio was 0.082 % per year, which implies that coastal waves have been increasing continuously. This coastal wave tendency analysis data can be used to evaluate coastal vulnerability due to recent climate change and the design of coastal erosion prevention structures.

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

Shoreline Changes Caused by the Construction of Coastal Erosion Control Structure at the Youngrang Coast in Sockcho, East Korea (속초 영랑해안 해빈침식대책 인공구조물 건설에 기인하는 해안선 변화)

  • Kang, Yoon-Koo;Park, Hyo-Bong;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.296-304
    • /
    • 2010
  • The shoreline change caused by the construction of shore protection structures are discussed based on the example of Youngrang coast, Sokcho where the coastal erosion control system(CECS), three artificial headlands and two submerged breakwaters are being constructed. The study qualitatively analyzed the shoreline changes of Youngrang coast using available satellite/aerial photographs and camera photographs taken during the construction period of 6 years since 2002 for the artificial headlands construction. The main results from the study are as following. (1) Before the installation of the middle artificial headland, longshore drifts along Youngrang coast are transported in the NW-SE direction according to the seasonally different wave characteristics. (2) During the CECS construction the shoreline is continuously changed by altering the local longshore drift budget. Especially, the middle artificial headland induces considerable change of shoreline by blocking the sediment supply from the southern pocket beach to the northern pocket beach and by accelerating the sediment accretion at the wave shadow zone behind its head. It induces the asymmetry on the net longshore drift causing the significant erosion at the center of the southern pocket beach. (3) The study demonstrates that serious unintended erosion/accretion problem are possibly occurred due to local changes on the wave transformation and the sediment transport by the construction of coastal erosion control system.

Review on Coastline Change and Its Response Along the Cotonou Coast, Benin in the Gulf of Guinea, West Africa (서아프리카 기니만에 있는 베냉 코토누의 해안선 변화와 대응에 대한 고찰)

  • Yang, Chan-Su;Hong, Hyeyeon;Shin, Dae-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.691-699
    • /
    • 2021
  • The global surface temperature has risen critically over the past century and according to the IPCC Fifth Assessment Report 2014, existing risks in natural and human systems will worsen. Coastal erosion is mostly caused by climate change and among all the coastal areas at risk, Benin, which is part of the Gulf of Guinea, has been ranked very highly as a vulnerable region. Therefore, in this review, we focus on the evolution of coastline change in Cotonou of Benin, summarizing its resultant impacts and applied measures around the coast area by reviewing previous studies. Signs of coastal erosion in Cotonou appeared in 1963. After 39 years, the east shoreline of Cotonou has retreated by 885 m, resulting in the disappearance of more than 800 houses. To solve this problem, Benin authorities built seven groynes in 2013, and have increased the number of the structure as a way to interrupt water flow and limit the movement of sediment. Over the region, shorelines appeared preserved accordingly. In contrast, areas located further east, where groynes were not installed, have suf ered from intensive erosion at a rate of 49 m/yr. In the future, as a next step, the effectiveness of groynes should be studied with local and broader perspectives.

Saltwater Intrusion Monitoring Evaluation through Automatic Vertical Line Method in a Costal Aquifer of the Eastern Part of Jeju Island (수직 라인 관측시스템을 이용한 제주 동부 해안대수층에서 해수침투 모니터링 평가)

  • Jang, Hojune;Ha, Kyoochul;Hwang, Inuk;Kim, Gee-Pyo;Park, Won-Bae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Groundwater monitoring is commonly practiced with real-time sensors placed in several depth spots in aquifer. However, this method only provides monitoring data at the point where the sensors are installed. In this study, we developed a vertical line monitoring system (VLMS) that can provide continuous data of groundwater parameters along the vertical depth. The device was installed in a well located on the coast of the eastern part of Jeju island to monitor electrical conductivity, temperature, salinity, pH, dissolved oxygen, and oxidation-reduction potential over approximately 3 months from September 11 to December 3, 2020. The results indicated that the groundwater levels fluctuated with the tidal change of seawater level, and the upper and lower boundaries of the freshwater and saltwater zone in the groundwater were located at below 16 m and 36 m of mean sea level, respectively. There was a large variation in EC values during the high tide and temperature change was the greatest during flow tide. Although further investigation is needed for improvement of the device to obtain more accurate and reliable data, the device has a potential utility to provide fundamental data to understand the seawater intrusion and transport mechanisms in coastal aquifers.

Research of Topography Changes by Artificial Structures and Scattering Mechanism in Yoobu-Do Inter-tidal Flat Using Remote Sensing Data (원격탐사자료를 이용한 인공구조물 건설에 의한 군산 유부도 조간대의 지형변화 및 표면특성에 관한 연구)

  • Xu, Zhen;Kim, Duk-Jin;Kim, Seung Hee
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.57-68
    • /
    • 2013
  • Large-scale coastal construction projects, such as land reclamation and dykes, were constructed from the late twentieth century in Yoobu-Do region. Land reclamation combined with the dynamics of tidal currents may have accelerated local sedimentation and erosion resulting in rapid reformation of coastal topography. This study presents the results of the topography changes around Yoobu-Do by large-scale coastal constructions using time-series waterline extraction technique of Landsat TM/ETM+ data acquired from 1998 to 2012. Furthermore, the Freeman-Durden decomposition was applied to fully polarimetric RADARSAT-2 SAR data in order to analyze the scattering mechanisms of the deposited surface. According to the case study, the deposition areas were over 4.5 $km^2$ and distributed in the east, northeast, and west of Yoobu-Do. In the eastern deposition area, it was found that the scattering mechanism was difference from other deposition areas possibly indicating that different types of soil were deposited.

A Study of Interrelationships between the Effect of the Upwelling Cold Water and Sea Breeze in the Southeastern Coast of the Korean Peninsula (한반도 동남연안지역의 냉수대 영향과 해풍의 상호관련성 연구)

  • Lee, Hwa-Woon;Ji, Hyo-Eun;Lee, Soon-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.481-492
    • /
    • 2009
  • The characteristic of cold water by upwelling in the southeast of the Korean Peninsula and the effect of sea breeze in this region are investigated. The coastal upwelling around the southeast coast of the Korea Peninsula is analyzed by using Coastal Oceanographic Data statistical analyses for 5 years were carried out. The period of an cold water event, on the average, was observed southwesterly wind events. The analysis suggests that strong and persistent southwesterly winds in period of an cold water play an important role of bring the moisture to the surface, generating persistent cyclone as jangma. In order to investigate the effect of cold water on sea breeze, we considered two case. First, Exp. 1 is not occurred coastal upwelling on sea breeze. Second, Exp. 2 is occurred cold water on sea breeze. Two experiments were completed separately to the effects of cold water by upwelling. The results show the sea breeze is stronger in Exp. 2, when the cold water occurs, and weaker in Exp. 1, when there is no cold water. In order to verify the effect of the sea breeze on the cold water by upwelling, on the intensification and change of direction of the prevailing wind, the sea breeze effectively intensify cold water condition.