• Title/Summary/Keyword: coarse-grained

Search Result 369, Processing Time 0.02 seconds

Mechanical Behaviour of Bio-grouted Coarse-grained Soil: Discrete Element Modelling

  • Wu, Chuangzhou;Jang, Bo-An;Jang, Hyun-Sic
    • 지질공학
    • /
    • 제29권4호
    • /
    • pp.383-391
    • /
    • 2019
  • Bio-grouting based on microbial-induced calcite precipitation (MICP) is recently emerging as a novel and environmentally friendly technique for improvement of coarse-grained ground. To date, the mechanical behaviour of bio-grouted coarse-grained soil with different calcite contents and grain sizes still remains poorly understood. The primary objective of this study is to investigate the influence of calcite content on the mechanical properties of bio-grouted coarse-grained soil with different grain sizes. This is achieved through an integrated study of uniaxial loading experiments of bio-grouted coarse-grained soil, 3D digitization of the grains in conjunction with discrete element modelling (DEM). In the DEM model, aggregates were represented by clump logic based on the 3D morphology digitization of the typical coarse-grained aggregates while the CaCO3 was represented by small-sized bonded particle model. The computed stress-strain relations and failure patterns of the bio-grouted coarse-grained soil were validated against the measured results. Both experimental and numerical investigation suggest that aggregate sizes and calcite content significantly influence the mechanical behaviour of bio-cemented aggregates. The strength of the bio-grouted coarse-grained soil increases linearly with calcite content, but decreases non-linearly with the increasing particle size for all calcite contents. The experimental-based DEM approach developed in this study also offers an optional avenue for the exploring of micro-mechanisms contributing to the mechanical response of bio-grouted coarse-grained soils.

Developing Coarse-Grained Force Fields for Polystyrene with Different Chain Lengths from Atomistic Simulation

  • Rao, Shuling;Li, Xuejin;Liang, Haojun
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.610-616
    • /
    • 2007
  • We developed a coarse-grained force field and have extended it to polystyrene with longer chain length. A systematic method was introduced and was utilized to explain how the coarse-grained force field for polystyrene could be developed from the atomistic simulation in the paper. We elected to use polystyrene with different chain lengths of 20, 40 and 80 monomers in this study. In three cases, we utilized the same new mapping scheme. The coarse-grained force field does reproduce the bond, angle, and radial distribution of the atomistic model. The coarse-grained model proved successful, as shown by analyses of the static and dynamic properties of different chain lengths.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

조립재가 흙의 역학적 성질에 미치는 영향 (Effect of Coarse mateflal on the mechanical properties of Soil)

  • 윤충섭;김호일
    • 한국농공학회지
    • /
    • 제31권3호
    • /
    • pp.57-69
    • /
    • 1989
  • The study was carried out for the strength parameter of coarse grained Soil and slope stability analysis of earth dam. The test samples were taken fifteen kinds of soil from cohesive soil to coarse gravel. The degree of compaction of test samples for shear test and permeability test was chosen 95 percentage of maximum dry density. The results of this study are as follows ; 1.The maximum dry density(Yd) of coarse grained soil increase in proportion to coarse particles(P) with the relation of Y d= 1.609+0.0043P. 2.The coefficients of permeability(k) decrease by the increase of fine particles(n) with the relation of k=0.0426e-0 185n. 3.The cohesions of soil decrease by the increase of coarse particles, but internal friction angles are more increased in same condition. 4.The internal friction angles(${\Phi}$) decrease in inverse proportion to void ratio(e) with the relation of ${\Phi}$ = 73.068 - 69.268e. 5.The strength parameters( Ct ${\Phi}$t) by triaxial compression test are clearly smaller than that (Cd, ${\Phi}$d) by direct shear test in fine grained soil, but the differences between both parameters are a little in coarse grained soil.The relations of both parameters are as follows; Ct = O.544Cd + 0.04 ${\Phi}$t= 1.282${\Phi}$d-2306 6.In cohesive soil, the strength parameters( Cl ${\Phi}$l) by large size shear test apparatus are similar to the strength parameters(Cs , ${\Phi}$s) by small size shear test appratus, but Cs and ${\Phi}$s values are larger than Cl and ${\Phi}$l values from 10 percentage to 20 percentage in coarse grained soil. 7.The fine grained soil is inappropriate to high dam more than 20 meters and it must be taken coarse grained soil with high internal friction angle for high dam.

  • PDF

Organic Carbon, Calcium Carbonate, and Clay Mineral Distributions in the Korea Strait Region, the Southern Part of the East Sea

  • Khim, Boo-Keun;Shin, Dong-Hyeok;Han, Sang-Joon
    • Journal of the korean society of oceanography
    • /
    • 제32권3호
    • /
    • pp.128-137
    • /
    • 1997
  • This study presents results from a detailed sedimentological investigation of surface sediments obtained from the Korea Strait region, the southern part of the East Sea (Sea of Japan). The distribution of different types of bottom sediments is controlled by the recent fine-grained sediment transport and deposition combined with the lowerings of sea level during the last glacial period, forming a diverse mixture of organic-rich fine-grained and shelly coarse-grained sediments. In comparison to high organic concentration of fine-grained sediments in the inner continental shelf and slope areas, the shell-rich coarse-grained sediments on the outer shelf are discernible being further modified. These coarse-grained sediments are confirmed as relict resulting from the sediment dynamics during the lower sea levels of the last glacial period. Clay mineral distribution of the fine-grained sediments gives information about the transport mechanism. Presence of present-day current system (the Tsushima Warm Current) is most probable source for the fine-grained particles into the open East Sea from the East China Sea, indicating that Holocene sediment dynamics may be used to explain the observed distribution of surface coarse-grained shell-rich sediments.

  • PDF

지면에 조성된 조립사질 토양이 석조문화재의 훼손에 끼치는 영향 (Influence of Coarse Grained Sandy Soil in Ground on Deterioration of Stone Cultural Properties)

  • 도진영
    • 한국광물학회지
    • /
    • 제19권1호통권47호
    • /
    • pp.31-38
    • /
    • 2006
  • 석조문화재 주변의 환경적인 요인은 다양한 형태의 손상을 불러일으킨다. 본 연구에서는 여러 환경 요인 중에서 지면에 조성된 조립사질 토양이 석조문화재의 손상에 끼치는 영향을 불국사 다보탑을 중심으로 살펴보았다. 복잡한 구조를 지닌 불국사다보탑의 주변 지면에는 조립사질토양이 조성되어 있고, 주변은 회랑으로 둘러싸여 있다. 경주의 거센 바람과 수많은 관람객으로 인하여 지면의 토양이 부유되어 복잡한 석탑의 부재 사이에 침착되고 있다. 조립사질토양이 석탑의 손상에 미치는 영향을 살펴보기 위하여 조립사질 토양과 석탑 주변에 떨어진 풍화편을 채취하여 X-선 회절분석, 편광현미경 및 전자현미경으로 광물조성과 조직을 관찰하였으며, IC와 ICP-AES를 이용하여 수용성 염성분을 분석하였다. 조립사질토양과 풍화편에서는 스멕타이트 뿐만 아니라, 일라이트, 카올리나이트가 검출되었는데, 이들은 수분과 접촉시 팽창을 하여 암석에 압력을 가중시킨다. 풍화편과 조립사질 토양에서는 또한 NaCl 염이 검출되었는데, 이 염은 점토광물에 나트륨이온을 제공하여서, 또는 상대습도 평형을 떨어뜨려서 점토광물의 팽창을 증진시킨다. 분석결과는 조립사질토양이 풍화된 석조문화재의 사이트환경으로는 적절치 못함을 보여준다.

Coarse Grain 소재용 초음파 변환기 개발 (Development of New Ultrasonic Transducer for Coarse-Grained Materials)

  • 김병극;이재옥;이세경
    • 비파괴검사학회지
    • /
    • 제10권1호
    • /
    • pp.18-23
    • /
    • 1990
  • In materials with the large grain size, ultrasonic waves are highly attenuated by the grain boundary acting as scattering centers due to discontinuity of elastic constant. In this study, the improved probes were developed so that they minimized the effect of grain scattering in order to detect deep flaws in coarse grained materials. As the result, the developed ultrasonic transducers showed the better sensitivity and signal to noise ratio when compared with the commercial probes in testing the interior of coarse grained material.

  • PDF

액상확산접합한 Ni기 초내열합금의 등온응고거동에 미치는 모재결정입계의 영향 (The Effect of Base Metal Grain Boundary on Isothermal Solidification Phenomena during TLP Bonding of Ni Base Superalloys)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.325-333
    • /
    • 2001
  • The effect of base metal grain size on isothermal solidification behavior of Ni-base superalloy, CMSX-2 during transient liquid phase (TLP) bonding was investigated employing MBF-80 insert metal. TLP-bonding of single crystal. coarse-grained and fine-grained CMSX-2 was carried out at 1373∼1548k for various holding time in vacuum. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process for single crystal, coarse-grained and fine-grained base metals. The completion time for isothermal solidification decreased in the order ; single crystal, coarse-grained and fine-grained base metals. The difference of isothermal solidification rates produced when bonding the different base metals could be explained quantitatively by the effect of base metal grain boundaries on the apparent average diffusion coefficient of boron in CMSX-2.

  • PDF

대형전단시험을 통한 댐제체용 조립재료의 경험적 설계정수에 대한 평가 (Evaluation of Empirical Design Factors of Coarse Grained Material through Large Scale Shear Test)

  • 오기대;김경열;이대수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.777-783
    • /
    • 2006
  • The coarse grained materials are used in various construction field such as express way back fill, Dam etc. Especially, for dam construction, a huge mount of rock fill materials are needed, so around domestic stony mountains are generally developed to produce materials. Not an accurate theory, but design criteria is based on empirical factors that were constructed in advance for design of dam especially Concrete Face Rockfill Dam(CFRD). Considering the post facts, the modified design criteria are essential in the future with more theoretical and experimental ways. In this study, large scale direct shear tests are performed with various relative density conditions on coarse grained material of Yecheon area to compare test results and general CFRD design factors.

  • PDF

조립재료에 대한 MD구성모델의 매개 변수 연구 (Parametric Study of MD Constitutive Model for Coarse-Grained Soils)

  • 최창호
    • 한국지반신소재학회논문집
    • /
    • 제12권1호
    • /
    • pp.11-19
    • /
    • 2013
  • 조립재료는 댐, 철도, 교량 구조물 건설시 제체, 성토재, 뒤채움재, 배수재 등으로 널리 사용되고 있으며, 이러한 구조물의 거동해석을 위한 수치해석을 위해 구성모델에 대한 연구가 다양하게 진행되어 왔다. 본 논문에서는 조립재료의 거동을 예측하기 위해 개발된 구성모델에 대한 변수 연구를 수행하였다. 구성모델은 한계상태이론에 근간한 bounding surface 모델로서 한 세트의 모델 정수를 활용하여 배수 조건, 구속압, 간극비에 상관없이 조립재료의 거동을 구현할 수 있는 장점을 지니고 있다. 구성모델은 탄성 파라미터, 한계상태 파라미터, 모델 고유파라미터를 활용하여 재료의 거동을 분석하며, 본 연구에서는 모델 고유 파라미터에 대한 변수 연구를 수행하였다. 변수 연구를 통해 구성모델이 조립재료의 가장 큰 특징인 비관계유통법칙(non-associative flow rule)에 따른 체적팽창 및 응력경로 변화에 따른 이동경화 현상을 적절히 모사할 수 있음을 파악하였다.