• 제목/요약/키워드: co-word

검색결과 313건 처리시간 0.029초

저자동시인용 분석과 동시출현단어 분석을 이용한 의료정보학 저널의 지적구조 분석 (Examining the Intellectual Structure of a Medical Informatics Journal with Author Co-citation Analysis and Co-word Analysis)

  • 허고은;송민
    • 정보관리학회지
    • /
    • 제30권2호
    • /
    • pp.207-225
    • /
    • 2013
  • 학문과 기술의 발달이 전개되면서 학문 간의 융합이 이루어지고 학제적 성향을 띠는 학문이 더욱 등장하게 되었다. 현재까지 계량정보학적 방법으로 학문 분야의 지적구조를 파악한 연구는 있었지만 학제적인 학문의 특성을 규명하여 지적구조를 분석한 시도는 적었다. 따라서 본 연구에서는 학제성을 띠는 의료정보학(Medical Informatics) 분야의 저널 중 IEEE ENG MED BIOL 저널을 선정하여 저자동시인용 분석과 동시출현단어 분석을 통해 본 저널의 지적구조를 파악하였다. 또한 상위 3개 대표 저널의 저자 및 MeSH Term을 추출하여 종합적으로 비교분석하였다. 이를 통해 의료정보학 분야의 융합된 학문들의 관계를 구조적으로 파악하고 의료정보학의 학문적 성향을 분석했다.

한의학 고문헌 데이터 분석을 위한 단어 임베딩 기법 비교: 자연어처리 방법을 적용하여 (Comparison between Word Embedding Techniques in Traditional Korean Medicine for Data Analysis: Implementation of a Natural Language Processing Method)

  • 오준호
    • 대한한의학원전학회지
    • /
    • 제32권1호
    • /
    • pp.61-74
    • /
    • 2019
  • Objectives : The purpose of this study is to help select an appropriate word embedding method when analyzing East Asian traditional medicine texts as data. Methods : Based on prescription data that imply traditional methods in traditional East Asian medicine, we have examined 4 count-based word embedding and 2 prediction-based word embedding methods. In order to intuitively compare these word embedding methods, we proposed a "prescription generating game" and compared its results with those from the application of the 6 methods. Results : When the adjacent vectors are extracted, the count-based word embedding method derives the main herbs that are frequently used in conjunction with each other. On the other hand, in the prediction-based word embedding method, the synonyms of the herbs were derived. Conclusions : Counting based word embedding methods seems to be more effective than prediction-based word embedding methods in analyzing the use of domesticated herbs. Among count-based word embedding methods, the TF-vector method tends to exaggerate the frequency effect, and hence the TF-IDF vector or co-word vector may be a more reasonable choice. Also, the t-score vector may be recommended in search for unusual information that could not be found in frequency. On the other hand, prediction-based embedding seems to be effective when deriving the bases of similar meanings in context.

다양한 지식을 사용한 영한 기계번역에서의 대역어 선택 (Target Word Selection for English-Korean Machine Translation System using Multiple Knowledge)

  • 이기영;김한우
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.75-86
    • /
    • 2006
  • 일반적으로 영어를 한국어로 번역할 때, 대부분의 영어 명사 어휘들은 해당 어휘가 사용되는 문맥에 따라 다양한 한국어 명사로 번역될 수 있다. 따라서 영어 원문이 갖는 의미를 손실 없이 번역문으로 전달하기 위해서는 문맥에 맞는 올바른 한국어 대역어를 선택할 수 있어야 한다. 본 논문에서는 동사구패턴, 공기 정보에 기반한 의미벡터, 공기 품사 정보 및 한국어 문맥 통계 정보 등의 다양한 지식을 사용하여 영어 명사 어휘의 대역어를 올바로 선택하는 방안을 제공한다. 동사구 패턴은 사전과 코퍼스를 사용하여 구축되었으며, 의미 벡터는 영어 어휘가 특정 한국어 어휘로 번역될 때 공기하는 정보들의 조건부 확률을 나타낸다. 한국어 문맥 통계 정보는 한국어 코퍼스로부터 추출된 N-그램 정보를 나타내며, 품사 공기 정보는 대역어 선택 모호성을 지니는 영어 어휘와 통계적으로 깊은 관련성을 지니는 품사를 나타낸다. 마지막으로 본 논문에서 제안한 대역어 선택 모호성 해소 방안을 평가하기 위한 실험을 수행하였으며, 실험 결과, 제안하는 방법이 기존의 방법보다 성능이 좋다는 것을 확인할 수 있었다.

  • PDF

단어동시출현분석을 통한 한국의 국가 R&D 연구동향에 관한 탐색적 연구 (An Exploratory Study on the Korean National R&D Trends Using Co-Word Analysis)

  • 서원철;박현석;윤장혁
    • Journal of Information Technology Applications and Management
    • /
    • 제19권4호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper identifies technology trends of national research and development (national R&D) by exploiting Korean national R&D patents, ranging from 2007 to 2010. In this paper, co-word analysis (CWA), which is a method to identify the relationship among technology terms by using their co-occurrences, is incorporated into network analysis to visualize the relationships among technology keywords of national R&D patents and calculate network indexes concerning inter-relationship diversity and strength of technology keywords. As a result, this research found that inter-relationship among technology keywords in national R&D are getting increasingly strengthening in an overall sense. In addition, the keyword inter-relationship diversity-strength map proposed in this paper revealed some significant technological keywords of national R&D : core technology keywords including "sensor", "film" and "fuel" and emerging keywords including "biosensor" and "thermoelectric". Because the proposed approach helps identify interdisciplinary trends of technology keywords from a massive volume of national R&D patents in a visual and quantitative way, we expect that the approach can be incorporated as a preliminary into the R&D planning process to assist R&D policy makers to understand technology convergence of national R&D and develop relevant R&D policies.

W Polymetal Gate Technology for Giga Bit DRAM

  • Jung, Jong-Wan;Han, Sang-Beom;Lee, Kyungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.31-39
    • /
    • 2001
  • W polymetal gate technology for giga bit DRAM are presented. Key module processes for polymetal gate are studied in detail. $W/WN_x/poly-silicon$ adopted for a word line of 256Mbit DRAM has good gate oxide integrity and junction leakage characteristics through full integration, which is comparable to those of conventional $WSi_x$/Poly-silicon gate process. These results undoubtedly show that $W/WN_x/poly-silicon$ is the strongest candidate as a word line for Giga bit DRAM.

  • PDF

워드임베딩을 활용한 복압성 요실금 관련 연구 동향에 관한 융합 연구 (A Convergence Study of the Research Trends on Stress Urinary Incontinence using Word Embedding)

  • 김준희;안선희;곽경태;원영수;유화익
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.1-11
    • /
    • 2021
  • 본 연구의 목적은 '복압성 요실금'을 키워드로 검색된 연구들의 경향과 특성을 단어 빈도를 통해 분석하고, 워드 임베딩을 사용하여 그 관계를 모델링 하고자 하였다. 의학 서지 데이터베이스인 MEDLINE에 등록되어 있는 복압성 요실금 연구 9,868개 논문들의 초록 문자 데이터를 Python 프로그램을 이용하여 추출하였다. 그런 다음 빈도 분석을 통해 10개의 키워드를 선택하였다. 키워드 관련 단어들의 유사도는 Word2Vec 머신러닝 알고리즘으로 분석하였다. 그리고, t-SNE 기법을 사용하여 단어의 위치와 거리가 시각화하였고, 이에 따라 그룹을 분류하여 이를 분석하였다. 복압성 요실금과 관련된 연구는 1980년대 이후 빠르게 증가했다. 키워드 분석을 통해 논문 초록에서 가장 많이 사용된 키워드는 '여성', '요도', '수술'로 나타났다. Word2Vec 모델링을 통해 복압성 요실금 관련 연구에서 주요 키워드들과 가장 높은 연관성을 나타내는 단어들에는 '여성', '절박', '증상' 등이 있었다. 그리고, t-SNE 기법을 통해 키워드와 관련 단어들은 복압성 요실금의 증상, 신체 기관의 해부학적 특성, 그리고 수술적 중재를 중심으로 하는 3개의 그룹으로 분류될 수 있었다. 본 연구는 초록을 구성하는 단어들의 키워드 빈도 분석 및 워드임베딩 방식을 이용하여 복압성 요실금 관련 연구들의 동향을 살펴본 최초의 연구이다. 본 연구의 결과는 향후 연구자들이 복압성 요실금 관련 연구 분야의 주제와 방향성을 선택하는 데 있어 기초자료로 활용될 수 있을 것이다.

한국농촌계획 온톨로지 구축을 위한 상호정보 기반 단어연결망 분석 (Word Network Analysis based on Mutual Information for Ontology of Korean Rural Planning)

  • 이제명
    • 농촌계획
    • /
    • 제23권3호
    • /
    • pp.37-51
    • /
    • 2017
  • There has been a growing concern on ontology especially in recent knowledge-based industry and defining a field-customized semantic word network is essential for building it. In this paper, a word network for ontology is established with 785 publications of Korean Society of Rural Planning(KSRP), from 1995 to 2017. Semantic relationships between words in the publications were quantitatively measured with the 'normalized pointwise mutual information' based on the information theory. Appearance and co-appearance frequencies of nouns and adjectives in phrases are analyzed based on the assumption that a 'noun phrase' represents a single 'concept'. The word network of KSRP was compared with that of $WordNet^{TM}$, a world-wide thesaurus network, for the verification. It is proved that the KSRP's word network, established in this paper, provides words' semantic relationships based on the common concepts of Korean rural planning research field. With the results, it is expecting that the established word network can present more opportunity for preparation of the fourth industrial revolution to the field of the Korean rural planning.

단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법 (Automatic Keyword Extraction using Hierarchical Graph Model Based on Word Co-occurrences)

  • 송광호;김유성
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.522-536
    • /
    • 2017
  • 키워드 추출은 주어진 문서로부터 문서의 주제나 내용에 관련된 단어들을 추출해내는 방법으로 대량의 문서를 다루는 텍스트마이닝 연구들이 전처리에서 공통적으로 거치는 대표 자질 추출에서 중요하게 활용될 수 있다. 본 논문에서는 하나의 문서의 주제에 적합한 키워드를 추출하기 위해 문서에 출현한 단어들 사이의 동시출현관계, 동시출현 단어 쌍 사이의 출현 종속 관계, 단어들 사이의 공통 부분단어 관계 등의 다양한 관계들을 특징으로 활용하여 구축한 계층적 그래프 모델을 제안하고, 그래프를 구성하는 정점(Vertex)들의 중요도를 평가할 때 입력 간선(Edge)에 의한 영향뿐만 아니라 출력 간선에 의한 영향도 고려한 새로운 중요도 산출 방법을 제안하며, 이를 토대로 점진적으로 키워드를 추출해내는 방안을 제안한다. 그리고 제안한 방법의 정확성과 주제적 포괄성 검증을 위해 다양한 분야의 주제를 가진 문서 데이터에 다양한 평가방법을 적용해 기존의 방법보다 전체적으로 더 나은 성능을 보임을 확인하였다.

주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석 (Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network)

  • 신현보;김혜진
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.179-200
    • /
    • 2019
  • 구전(Word-of-Mouth) 활동은 오래 전부터 기업의 마케팅 과정에서 중요성을 인식하고 특히 마케팅 분야에서 많은 주목을 받아왔다. 최근에는 인터넷의 발달에 따라 온라인 뉴스, 온라인 커뮤니티 등에서 사람들이 지식과 정보를 주고 받는 방식이 다양해지면서 구전은 후기, 평점, 좋아요 등으로 입소문의 양상이 다각화되고 있다. 이러한 현상에 따라 구전에 관한 다양한 연구들이 선행되어왔으나, 이들을 종합적으로 분석한 메타 분석 연구는 부재하다. 본 연구는 학술 빅데이터를 활용해 구전 관련 연구동향을 알아내기 위해서 텍스트 마이닝 기법을 적용하여 주요 연구들을 추출하고 시기별로 연구들의 주요 쟁점을 파악하는 기법을 제안하였다. 이를 위해서 1941년부터 2018년까지 인용 데이터베이스인 Scopus에서 'Word-of-Mouth'라는 키워드로 검색되는 총 4389건의 문헌을 수집하였고, 영어 형태소 분석과 불용어 제거 등 전처리 과정을 통해 데이터를 정제하였다. 본 연구는 학문 분야의 발전 궤적을 추적하는 데 활용되는 주경로 분석기법을 적용해 구전과 관련된 핵심 연구들을 추출하여 연구동향을 거시적 관점에서 제시하였고, 단어동시출현 정보를 추출하여 키워드 간 네트워크를 구축하여 시기별로 구전과 관련된 연관어들이 어떻게 변화되었는지 살펴봄으로써 연구동향을 미시적 관점에서 제시하였다. 수집된 문헌 데이터를 기반으로 인용 네트워크를 구축하고 SPC 가중치를 적용하여 키루트 주경로를 추출한 결과 30개의 문헌으로 구성된 주경로가 추출되었고, 연관어 네트워크 분석을 통해서는 시기별로 온라인 시대, 관광 산업 등 다양한 산업군 등 산업 변화가 반영돼 시대적 변화와 더불어 발전하고 있는 학술적 영역의 변화를 확인할 수 있었다.