• Title/Summary/Keyword: co-residence

Search Result 179, Processing Time 0.028 seconds

Behaviour of Condensing Gaseous Species under Various Operating Conditions in a Combustion Facility (환경조건변화에 따른 응축성 가스상 물질의 거동특성)

  • Kim, Yong-Gu;Bong, Choon-Keun;Song, Gyu-Young;Lee, Myong-Hwa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.634-641
    • /
    • 2013
  • Condensing species behaviour downstream of a combustor was discussed with particle size distribution in this study. The effects of operating conditions in a biomass combustion facility, i.e. concentration of condensing species, temperature gradient, residence time and injection of adsorbents, on particle size distribution were investigated. Pyroligneous liquid which was completely vaporized at the temperature higher than $350^{\circ}C$ was used as a representative of condensing gaseous species. We found that particle size downstream of a combustor increased with increasing heating temperature (i.e. concentration of condensing species) and residence time. However, temperature gradient was not an important factor to control the particle size. The addition of $SiO_2$ precursor as an adsorbent could effectively prevent the particle formation by adsorbing condensing gaseous species on $SiO_2$ particles, and increased the particle size up to 300 nm, resulting in increasing particle removal efficiency in a conventional air pollution control device.

In-line measurement of residence time distribution in twin-screw extruder using non-destructive ultrasound

  • Lee, Sang-Myung;Park, Jong-Cheol;Lee, Sang-Mook;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.87-95
    • /
    • 2005
  • In this study, we performed RTD measurement at the die exit of co-rotating twin-screw extruder using a non-destructive ultrasonic device. The ultrasonic device was attached at slit die and was composed of a steel buffer rod and 10 MHz longitudinal piezoelectric ultrasonic transducer. This in-line ultrasonic monitoring method is based on the ultrasonic response of $CaCO_3$ filled in polymer. The RTD is evaluated by variation of ultrasonic attenuation with time caused by change of the tracer concentration during extrusion. The ultrasonic tracer, pellet type of compounded $CaCO_3$ in polymer was used in this study. The effects of tracer concentration on RTD and flow patterns were studied. Evaluation for the residence functions at different screw speeds, feeding rates and screw configurations were also carried out.

Combustion Stability and the Properties of Methane/Air Mixture Subjected to Unsteady Flow Fluctuations (비정상 유동의 메탄/공기 혼합기 반응안정성 효과 연구)

  • Lee, Eui-Ju;Oh, Chang-Bo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • Flame extinction and the chemistry of stoichiometric methane/air mixture were investigated numerically in the PSR(perfectly stirred reactor). For the study, PSR code was modified to be possible to unsteady calculation, and the sinusoidal fluctuation was subjected to the residence time. In the region of residence time far from the extinction limit, combustion mode was strongly dependent on the frequency. The low frequency excitation provided the quasi-steady behavior on the temperature and the concentrations of related species, but small variation of temperature was observed under high frequency. In the region of residence time near the extinction limit, the mixture subjected above 1 KHz was still reacting even though extinction had to be occurred under quasi-steady concept. The attenuation of extinction limit resulted from that chemical time was comparable to the flow time. The mean mole fractions of both NO and CO were almost same regardless of imposed frequency. However, the average mole fraction of $C_2H_2$ was decreased as increasing frequency, which implies that soot yield might be reduced at the higher frequency of flow excitation. The result provides the basic concept for flame stabilization, and it will be used to design a mild combustor.

Residential Mobility of the Elderly for Independent Living

  • LEE, Hyunjeong
    • Architectural research
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • As aging is notably developed, the elderly find it challenging to get around in housing chosen in their midlife, and seek for an alternative residential setting enabling them to continue the independent living. This research focuses on the residential mobility of the elderly who have recently moved to senior housing, and also is to investigate their residential satisfaction at previous residence. As a cross-sectional study, the research adopts the self-administered questionnaire survey. The questionnaires are mailed out, and one out of the two responses is retrieved. To investigate the residential mobility of the elderly, the research model is constructed based upon Morris and Winter's Housing Adjustment Theory. The result shows that the residential mobility of elderly from previous residence is a need-based choice, want-driven behavior and demand-oriented decision to maintain continued independence and utilize resources available during the aging process. Also, it is found that the vast majority of both co-op and rental households are satisfied with their previous residential environment. The previous residential satisfaction of co-op elderly is significantly influenced by household and housing characteristics, housing norm status, and environmental needs for independent living while only housing norm status is a significant predictor to explain the previous residential satisfaction of rental elderly.

An Association between the Latent Profiles of the Difficulties Associated with School- to-Work Transitions and Mental Well-Being among University Students (대학생의 취업이행 과정의 어려움에 관한 잠재유형과 정신적 안녕감과의 관계)

  • Jeewon Chun
    • Human Ecology Research
    • /
    • v.61 no.3
    • /
    • pp.335-348
    • /
    • 2023
  • The purpose of this study was to identify: (a) the latent profiles of the difficulties associated with the schoolto-work transition (decline in confidence, mood swings, family disagreements, the burdens of familial expectations, economic hardship, and a lack of support) made by university students, (b) predictors (gender, age, grade, university location, co-residence with parents on weekdays, monthly household income, and parental educational attainment) of these profiles, and (c) how the profiles were associated with mental wellbeing. The participants of this study were 311 senior or above students (164 males and 147 females) under the age of 29, who were unmarried and preparing for employment. The findings of this study were as follows. First, the latent profile analysis revealed three distinct profiles: the "low overall difficulties" type (25.4%), the "moderate overall difficulties" type (49.9%), and the "high overall difficulties" type (24.7%). Second, the factors that predicted each profile included gender, age, co-residence with parents on weekdays, monthly household income, and parental educational attainment. Third, the "low overall difficulties" type demonstrated the highest level of mental well-being (emotional, social, and psychological well-being). This study was significant for examining the latent profiles of the difficulties associated with the school-to-work transition made by university students preparing for employment, while also exploring their mental well-being. Based on the results of this study, practical implications, limitations, and suggestions for further study were discussed.

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Characteristics of Related Companies and Process of Japanese Co-operative Housing (일본의 Co-operative Housing 관련 회사 및 프로세스 특성)

  • Park, Jee-Hyun;Bae, Jung-Yoon;Song, Min-jung;Yoo, Bok-Hee;Yoon, Chung-Sook
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.207-212
    • /
    • 2003
  • Today, demands on the housing that is fit f3r each and every person and restoration of the community are increasing rapidly. USA Europe and Japan have been constructing Co-operative Housing as an alternative residence. Therefore this study has a purpose to show the characteristics of related companies and the process of Japanese Co-operative Housing through the field trip in Japan.

  • PDF

Characteristics of CaCO3 Sorbent Particles for the In-furnace Desulfurization (로 내 탈황을 위한 CaCO3 흡착제 입자의 분위기 기체와 체류 시간의 변화에 따른 특성)

  • Lee, Kang-Soo;Jung, Jae-Hee;Keel, Sang-In;Lee, Hyung-Keun;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • The in-furnace desulfurization technique is applied to the $O_2/CO_2$ combustion system for the carbon capture and storage (CCS) process because this combustion system does not need an additional chamber for the desulfurization. $CaCO_3$ sorbent particles, which have a wide range in size from a few nanometers to several tens of micrometers, are used for this process. In this study, an experimental system which can simulate the $O_2/CO_2$ combustion system was developed. $CaCO_3$ sorbent particles were exposed to the high temperature reactor at $1200^{\circ}C$ with various residence times (0.33-1.46 s) in air and $CO_2$ atmospheric conditions, respectively. The sorbent particles were then sampled at the inlet and outlet of the reactor and analyzed qualitatively/quantitatively using SMPS, XRD, TGA, and SEM. The results showed that the residence time and atmospheric condition in a high temperature reactor can affect the characteristics of the $CaCO_3$ sorbent particles used in the in-furnace desulfurization technique, such as the calcination rate and reaction mechanism.

Numerical Study of CO Reduction Characteristics in High-temperature Air Stream Diluted with Exhaust Gas (배기가스가 혼합된 고온 공기류에서의 CO 소멸특성에 대한 수치해석 연구)

  • Park, Ji-Woong;Oh, Chang Bo
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.8-12
    • /
    • 2015
  • The CO reduction characteristics of hot air stream diluted with exhaust gas in a perfectly stirred reactor (PSR) were investigated numerically. The dilution ratio ($\Omega$), inlet temperature ($T_{in}$), and residence time ($\tau$) were considered as parameters to investigate the effects of those on the emission indices for CO and $CO_2$ (EICO and $EICO_2$). The roles of dominant reactions and the production rates of major species were analyzed. It was found from the EICO trend that the supplied CO in the air stream was consumed. The EICO increased negatively with $T_{in}$ at fixed $\tau$ regardless of $\Omega$. However, the magnitude of EICO and minimum inlet temperature for CO reduction showed complicated trend according to the variation of $\tau$. It was identified that the OH radical, generated from the reactions, $O_2+H{\leftrightarrow}O+OH$ and $2OH{\leftrightarrow}H+H_2O$, affected the CO reduction by the reaction, $CO+OH{\leftrightarrow}H+CO_2$. However, the CO emission ratio increased at sufficiently high inlet temperature range due to the thermal dissociation of $CO_2$.

EINOx scaling of H2/CO Syngas Non-premixed Turbulent Jet Flame (H2/CO 합성가스의 난류 제트 확산화염에서 EINOx Scaling)

  • Hwang, Jeongjae;Sohn, Kitae;Kim, Taesung;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.55-58
    • /
    • 2012
  • EINOx scaling for $H_2/CO$ non-premixed turbulent jet flame was conducted. NOx concentration and flame length were measured simultaneously with varying flow conditions. Flame length increases with Reynolds number which means the flames in buoyancy-momentum transition region. We assessed the previous Chen & Driscoll's scaling with present results. However, the scaling cannot satisfy the present results. We proposed new scaling which is addressed the simplified flame residence time. The new scaling satisfies the results of $H_2/CO$ syngas flame as well as pure hydrogen flames.

  • PDF