• 제목/요약/키워드: co-regulated genes

검색결과 122건 처리시간 0.022초

Biodegradation and Removal of PAHs by Bacillus velezensis Isolated from Fermented Food

  • Sultana, Omme Fatema;Lee, Saebim;Seo, Hoonhee;Al Mahmud, Hafij;Kim, Sukyung;Seo, Ahyoung;Kim, Mijung;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.999-1010
    • /
    • 2021
  • Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. They are highly toxigenic and carcinogenic. Probiotic bacteria isolated from fermented foods were tested to check their ability to degrade and/or detoxify PAHs. Five probiotic bacteria with distinct morphologies were isolated from a mixture of 26 fermented foods co-cultured with benzo(a)pyrene (BaP) containing Bushnell Haas minimal broth. Among them, B. velezensis (PMC10) significantly reduced the abundance of BaP in the broth. PMC10 completely degraded BaP presented at a lower concentration in broth culture. B. velezensis also showed a clear zone of degradation on a BaP-coated Bushnell Haas agar plate. Gene expression profiling showed significant increases of PAH ring-hydroxylating dioxygenases and 4-hydroxybenzoate 3-monooxygenase genes in B. velezensis in response to BaP treatment. In addtion, both live and heat-killed B. velezensis removed BaP and naphthalene (Nap) from phosphate buffer solution. Live B. velezensis did not show any cytotoxicity to macrophage or human dermal fibroblast cells. Live-cell and cell-free supernatant of B. velezensis showed potential anti-inflammatory effects. Cell-free supernatant and extract of B. velezensis also showed free radical scavenging effects. These results highlight the prospective ability of B. velezensis to biodegrade and remove toxic PAHs from the human body and suggest that the biodegradation of BaP might be regulated by ring-hydroxylating dioxygenase-initiated metabolic pathway.

Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows

  • Chen, Qu;Wu, Chen;Yao, Zhihao;Cai, Liuping;Ni, Yingdong;Mao, Shengyong
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1184-1194
    • /
    • 2022
  • Objective: High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods: In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results: Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion: Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.

염생식물인 갯끈풀과 갯메꽃 추출물의 HaCaT 세포에서 피부 보습 및 피부 장벽 기능에 미치는 영향 (Effect of Halophyte (Spartina anglica and Calystegia soldanella) Extracts on Skin Moisturizing and Barrier Function in HaCaT Cells)

  • 하유나;정재우;이원휘;오준혁;김연정
    • 한국해양생명과학회지
    • /
    • 제6권2호
    • /
    • pp.58-65
    • /
    • 2021
  • 노화가 진행될수록 활성산소종으로 인하여 피부 보습은 떨어지고 피부 장벽은 붕괴되어 피부가 손상된다. 본 연구에서는 인천 동막 해변에 서식하는 염생식물인 갯끈풀(Spartina anglica; SAE)과 갯메꽃(Calystegia soldanella; CSE)을 70% 에탄올(EtOH)로 추출하여 피부 보습 및 피부 장벽 기능 강화에 대한 효능을 평가하였다. 이 추출물들에 대한 피부 각질형성세포(HaCaT cell)에서 세포독성을 WST-8 assay를 이용하여, 세포 생존율이 90% 이상을 보이는 농도를 선별하여 추가 실험을 진행하였다. ABTS 라디칼 소거능을 통해 항산화 효과를 확인한 결과, SAE와 CSE는 높은 라디칼 소거능을 보였다. 피부 보습과 관련된 인자들인 filaggrin (FGL), aquaporin 3(AQP3), hyaluronan synthase 2 (HAS2)과 피부 장벽 기능과 연관 있는 transglutaminase 1 (TGM1)과 involucrin (INV)의 유전자 수준에서의 발현 변화를 측정한 결과, SAE에 의해 AQP3, HAS2, TGM1의 발현이 증가하였으나, CSE는 변화가 없는 것을 확인할 수 있었다. SAE에 의한 세포 내 신호전달 경로를 확인하기 위해 western blot 분석을 수행하였다. Extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein kinase의 활성이 SAE에 의하여 상향 조절되었음을 확인하였다. 이러한 결과는 갯끈풀 추출물이 피부 보습 및 피부 장벽 기능 강화를 위한 화장품의 기능성 소재로 사용될 수 있음을 시사한다.

1-Deoxynojirimycin Isolated from a Bacillus subtilis Stimulates Adiponectin and GLUT4 Expressions in 3T3-L1 Adipocytes

  • Lee, Seung-Min;Do, Hyun Ju;Shin, Min-Jeong;Seong, Su-Il;Hwang, Kyo Yeol;Lee, Jae Yeon;Kwon, Ohsuk;Jin, Taewon;Chung, Ji Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.637-643
    • /
    • 2013
  • We have demonstrated that 1-deoxynojirimycin (DNJ) isolated from Bacillus subtilis MORI could enhance the levels of adiponectin and its receptors in differentiated 3T3-L1 adipocytes, which has been shown to be effective in lowering blood glucose levels and enhancing insulin sensitivity. DNJ was not toxic to differentiated 3T3-L1 adipocytes for up to a concentration of $5{\mu}M$. In terms of expression levels of adiponectin and its receptors (AdipoR1 and AdipoR2), DNJ in concentrations as low as $0.5{\mu}M$ elevated both mRNA and protein levels of adiponectin and transcript levels of AdipoR1 and AdipoR2. In addition, DNJ increased phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) in a statistically significant manner. Finally, treatment with DNJ resulted in increased mRNA expression of glucose transporter 4 (GLUT4), which encodes for a glucose transporter, along with a significant increase in glucose uptake into the adipocytes based on results of a 2-deoxy-D-[$^3H$] glucose uptake assay. Our findings indicate that DNJ may greatly facilitate glucose uptake into adipose tissues by increasing the action of adiponectin via its up-regulated expression as well as its receptor genes. In addition, the glucose-lowering effects of DNJ may be achieved by an increased abundance of GLUT4 protein in the plasma membrane, as a consequence of the increased transcript levels of the GLUT4 gene and the activation of AMPK.

고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석 (Development of high tryptophan GM rice and its transcriptome analysis)

  • 정유진;;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS)는 트립토판(Trp)과 indole-3-acetic acid, indole alkaloids의 생합성 경로에서 중요한 효소로 작용한다. 트립토판 생합성 상에서 feedback inhibition에 민감하게 반응하는 AS alpha-subunit 관련 OASA2 유전자 영역의 single (F124V) 및 double (S126F/L530D) 점돌연변이로 변형된 유전자의 재조합운반체를 작성하고 이들 유전자들을 Agrobacterium 방법으로 동진벼에 도입하여 형질전환체를 육성하였다. Single 및 double 돌연변이 OsASA2 유전자가 도입된 형질전환 벼 계통들은 nos gene probe를 이용한 TaqMan PCR 방법으로 single copy를 선발하였고, intergenic 계통을 선발하기 위해서 Bfa I 제한효소를 이용하여 RB와 LB 인접서열로부터 IPCR을 통한 FST 분석을 수행하여 4 개의 intergenic 계통을 선발하였다. 도입된 유전자의 발현으로 형질전환 벼는 Trp, IAN 및 IAA가 잎에 가장 많이 축적되었고, 종자의 트립토판 함량도 증가되었다. 후대에서 tryptophan 함량이 높은 S-TG와 D-TG의 두 호모 이벤트 계통을 육성하여 트립토판 함량을 분석한 결과 대조구에 비하여 13~30배 이상 높게 나타났으며, 유리아미노산의 함량도 증가하였다. 이벤트 계통을 이용하여 microarray 분석을 수행한 결과 세포 내 이온 수송, 영양분 공급 등에 영향을 주는 유전자군들이 up-regulation 되었고, 세포 내 기능유전자의 역할을 담당하는 조효소 등이 down-regulation 된 것을 확인 할 수 있었다. 이러한 결과는 선발된 두개의 상동성 이벤트 계통들이 고함량의 유리 트립토판 생산 벼의 육종에 효과적으로 이용될 수 있음을 보여준 결과로 생각된다.

Molecular and functional characterization of the adiponectin (AdipoQ) gene in goat skeletal muscle satellite cells

  • Wang, Linjie;Xue, Ke;Wang, Yan;Niu, Lili;Li, Li;Zhong, Tao;Guo, Jiazhong;Feng, Jing;Song, Tianzeng;Zhang, Hongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1088-1097
    • /
    • 2018
  • Objective: It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). Methods: SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco's modified Eagle's medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. Results: The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding $protein-{\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, and AdipoR1 did not change significantly. Conclusion: Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • 제35권5호
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.

Kisspeptin-10 Enhanced Egg Production in Quails Associated with the Increase of Triglyceride Synthesis in Liver

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.;Zhao, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권8호
    • /
    • pp.1080-1088
    • /
    • 2013
  • Our previous results showed that kisspeptin-10 (Kp-10) injections via intraperitoneal (i.p.) once daily for three weeks notably promoted the egg laying rate in quails. In order to investigate the mechanism behind the effects of Kp-10 on enhancing the egg laying rate in birds, this study focused on the alternations of lipids synthesis in liver after Kp-10 injections. 75 female quails (22 d of age) were allocated to three groups randomly, and subjected to 0 (control, Con), 10 nmol (low dosage, L) and 100 nmol (high dosage, H) Kp-10 injections via i.p. once daily for three weeks, respectively. At d 52, quails were sacrificed and sampled for further analyses. Serum $E_2$ concentration was increased by Kp-10 injections, and reached statistical significance in H group. Serum triglyceride (TG) concentrations were increased by 46.7% in L group and 36.8% in H group, respectively, but did not reach statistical significance, and TG contents in liver were significantly elevated by Kp-10 injections in a dose-dependent manner. Serum total cholesterol (Tch) concentrations significantly decreased in H group, while in H group the hepatic Tch content was markedly increased. The level of non-esterified fatty acid (NEFA), apolipoprotein A1 and B (apoA1 and apoB) were not altered by Kp-10 injections. The genes expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FAS), apolipoprotein VLDL-II (apoVLDL-II), cholesterol $7{\alpha}$-hydroxylase (CYP7A1) and vitellogenin II (VTG-II) were significantly up-regulated by high but not low dosage of Kp-10 injection compared to the control group. However, the expression of SREBP-2, acetyl-CoA carboxylase ($ACC_{\alpha}$), malic enzyme (ME), stearoyl-CoA (${\Delta}9$) desaturase 1 (SCD1), apolipoprotein A1 (apoA1), fatty acid binding protein 2 (FABP2), 3-hydroxyl-3-methyl glutaryl-coenzyme A reductases (HMGCR), estrogen receptor ${\alpha}$, ${\beta}$($ER{\alpha}$ and ${\beta}$) mRNA were not affected by Kp-10 treatment. In line with hepatic mRNA abundance, hepatic SREBP1 protein content was significantly higher in H group. Although the mRNA expression was not altered, the content of $ER{\alpha}$ protein in liver was also significantly increased in H group. However, SREBP-2 protein content in liver was not changed by Kp-10 treatment. In conclusion, exogenous Kp-10 consecutive injections during juvenile stage significantly advanced the tempo of egg laying in quails, which was associated with the significant elevation in hepatic lipids synthesis and transport.

고지방 식이로 유도된 비만 쥐에서 HPJ 추출물의 항비만 효과 (Anti-Obese Activity of HPJ Extract on High Fat Diet-Induced Obese Mice)

  • 원해단;권해연;장아;김성집;신대희;임방호;정성현
    • 약학회지
    • /
    • 제53권5호
    • /
    • pp.286-292
    • /
    • 2009
  • In this study, we investigated the anti-obese activity of HPJ extract in C57BL/6J mice. The C57BL/6J mice were randomly divided into five groups: normal control group (Con), high fat diet control group (HFD), treatment groups with HPJ at 125 mg/kg (HPJ125), 250 mg/kg (HPJ250), or 500 mg/kg (HPJ500). To induce an obesity, mice were fed by a high fat diet for 6 weeks, and mice were administered with HPJ extract once a day for 8 weeks. At the end of treatment, we examined the effect of HPJ extract on body weight, plasma lipid, and lipogenic enzymes. HPJ extract was found to lower whole body and epididymal adipose tissue weights and lowered plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) and leptin, compared to those in HFD group. Histological analyses of the liver and fat tissues of mice treated with HPJ extract revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the HFD group. In addition, HPJ extract preserved the morphological integrity of pancreatic islets. To elucidate an action mechanism of HPJ extract, Western blot and RT-PCR were performed using epididymal adipose tissues. HPJ extract up-regulated the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylasse (ACC). HPJ extract also attenuated lipogenic gene expressions of sterol regulatory element-binding protein $1{\alpha}$ (SREBP$1{\alpha}$), fatty acid synthase (FAS), sterol-CoA desaturase 1 (SCD1) and glycerol-3-phosphate acyltransferase (GPAT) in dose-dependent manners. In contrast, expressions of lipolytic genes such as peroxisome proliferator-activated receptor-$\alpha$ (PPAR-${\alpha}$) and CD36, and fatty acid $\beta$-oxidation gene, carnitine palmitoyltransferase-1 (CPT-1) were increased. These results suggest that HPJ extract ameliorates obesity through inhibiting synthesis of lipogenic enzymes as well as stimulating fatty acid oxidation resulting from activation of AMPK, and HPJ extract could be developed as a potential therapeutic agent for obese patients.

Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18

  • Serivichyaswat, Phanu;Ryu, Hak-Seung;Kim, Wanhui;Kim, Soonkap;Chung, Kyung Sook;Kim, Jae Joon;Ahn, Ji Hoon
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.259-266
    • /
    • 2015
  • The regulation of flowering time has crucial implications for plant fitness. MicroRNA156 (miR156) represses the floral transition in Arabidopsis thaliana, but the mechanisms regulating its transcription remain unclear. Here, we show that two AGAMOUS-like proteins, AGL15 and AGL18, act as positive regulators of the expression of MIR156. Small RNA northern blot analysis revealed a significant decrease in the levels of mature miR156 in agl15 agl18 double mutants, but not in the single mutants, suggesting that AGL15 and AGL18 co-regulate miR156 expression. Histochemical analysis further indicated that the double mutants showed a reduction in MIR156 promoter strength. The double mutants also showed reduced abundance of pri-miR156a and pri-miR156c, two of the primary transcripts from MIR156 genes. Electrophoretic mobility shift assays demonstrated that AGL15 directly associated with the CArG motifs in the MIR156a/c promoters. AGL18 did not show binding affinity to the CArG motifs, but pull-down and yeast two-hybrid assays showed that AGL18 forms a heterodimer with AGL15. GFP reporter assays and bimolecular fluorescence complementation (BiFC) showed that AGL15 and AGL18 co-localize in the nucleus and confirmed their in vivo interaction. Overexpression of miR156 did not affect the levels of AGL15 and AGL18 transcripts. Taking these data together, we present a model for the transcriptional regulation of MIR156. In this model, AGL15 and AGL18 may form a complex along with other proteins, and bind to the CArG motifs of the promoters of MIR156 to activate the MIR156 expression.