• Title/Summary/Keyword: co-operation performance

Search Result 675, Processing Time 0.033 seconds

Simultaneous Treatment of Carbon Dioxide and Ammonia by Microalgal Culture (조류배양을 통한 이산화탄소 및 암모니아의 동시처리)

  • ;;Bohumil Volesky
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.328-336
    • /
    • 1999
  • A green microalga, Chlorella vulgaris UTX 259, was cultivated in a bench-scale raceway pond. During the culture, 15%(v/v) $CO_2$ was supplied and industrial wastewater discharged from a steel-making plant was used as a culture medium. In a small scale culture bottle, the microalga grew up to 1.8 g $dm^{-3}$ of cell concentration and ammonia was completely removed from the wastewater with an yield coefficient of 25.7 g dry cell weight $g^{-1}\;NH_3-N$. During the bottle-culture, microalga was dominant over heterotrophic microorganisms in the culture medium. Therefore, the amount of carbon dioxide fixation could be estimated from the change of dry cell weight. In a semi-continuous operation of raceway pond with intermittent lighting (12 h light and 12 h dark), increase of dilution rate resulted in increase of the ammonia removal rate as well as the $CO_2$ fixation rate but the ammonia removal efficiency decreased. Ammonia was not completely removed from the medium (wastewater) of raceway pond which was operated in a batch mode under a light intensity up to 20 klux. The incomplete removal of ammonia was believed due to insufficient light supply. A mathematical model, capable of predicting experimental data, was developed in order to simulate the performance of the raceway pond under the light intensity of sun during a bright daytime. Simulation results showed that the rates of $CO_2$ fixation and ammonia removal could be enhanced by increasing light intensity. According to the simulation, 80 mg $dm^{-3}$ of ammonia in the medium could be completely removed if the light intensity was over 60 klux with a continuous lighting. Under the optimal operating condition determined by the simulation, the rates of carbon dioxide fixation and ammonia removal in the outdoor operation of raceway pond were estimated as high as $24.7 g m^{-2} day^{-1}$ and $0.52 g NH_3-N m^{-2} day^{-1}$, respectively.

  • PDF

Low-temperature Oxidation of Odor Compounds over La-based Perovskite Catalyst (란탄 기반 페롭스카이트 촉매를 이용한 악취 유발 물질의 저온 산화 반응)

  • Bang, Yong-Ju;Seo, Jeong-Gil;Lee, Gi-Chun;Park, Chan-Jung;Kim, Hyung-Tae;Song, In-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.168-174
    • /
    • 2011
  • Various La-based perovskite catalysts were prepared by a Pechini method, and they were applied to the low-temperature oxidation of odor compounds exhausted from waste food treatment process for effective deodorization. Quantitative and qualitative analyses of exhausted gas were conducted to measure the amount of major odor compounds with respect to operation time. A standard odor sample composed of major odor compounds was then prepared for use as a feed for oxidation reaction system. Various transition metal(M)-substituted La-based perovskite catalysts ($LaMO_{3}$: M=Cr, Mn, Fe, Co, and Ni) were prepared and applied to the oxidation of odor compounds in order to investigate the $LaNiO_3$ catalyst showed the best catalytic performance. Pt-substituted perovskite catalysts ($LaNi_{1-x}Pt_{x}O_{3}$: x=0, 0.03, 0.1, and 0.3) were then prepared for enhancing the catalytic performance. It was found that $LaNi_{0.9}Pt_{0.1}O_{3}$ catalyst served as the most efficient catalyst. Supported perovskite catalysts ($XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$: X=perovskite content(wt%), 0, 10, 20, 30, 40, 50, and 100) were finally applied for the purpose of maximizing the catalytic performance of perovskite catalyst in the low-temperature oxidation reaction. Catalytic performance of $XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ catalysts showed a volcano-shaped curve with respect to perovskite content. Among the catalysts tested, $20LaNi_{0.9}Pt_{0.1}O_{3}$/$Al_{2}O_{3}$ catalyst exhibited the highest conversion of odor compounds of 88.7% at $180^{\circ}C$.

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

Chromaticity Improvement of PEG Waste from Wire Sawing of Silicon Ingot (실리콘 잉곳 절삭시 발생하는 폐 PEG 색도 개선에 관한 연구)

  • Cho, Yun-Kyeong;Jung, Kyeong-Youl;Sim, Min-Seok;Lee, Gi-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.310-316
    • /
    • 2012
  • The chromaticity of polyethylene glycol (PEG) generated from the recyling of a silicone slurry waste was improved by using activated carbon powder and a carbon filter. The color change of the PEG waste was investigated by changing the amount of adsorbent, adsorption time and temperature. The surface area of activated carbon did not have a significant impact on improving the color of the PEG waste. According to the results for the APHA color variation of the PEG waste changing the amount of the carbon adsorbent, the optimal usage to achieve the low APHA value was 100~150 mg-C/g-PEG. From the investigatnion on the effect of the adsorption temperature range from $25^{\circ}C$ to $100^{\circ}C$, it was found that the optimal temperatures were $40{\sim}50^{\circ}C$ in terms of achieving the lowest APHA value. The variation of the APHA color was investigated by changing the operation condition of the activated carbon filters. The use of ACF was a good way to enhance the chromaticity of the PEG waste. As a result, the APHA value of the PEG waste (APHA=53 at the initial waste) was reduced to be 10 through the ACF purification. It was also confirmed that the performance of the used carbon adsorbent can be recovered by the washing with purified water.

Improved Design of Hydraulic Circuit of Front-end Loader for Bump Shock Reduction of an Agricultural Tractor (농업용 트랙터의 프론트 로더 충격 저감을 위한 유압 회로의 설계 개선)

  • Cho, Bong Jin;Ahn, Seong Wook;Lee, Chang Joo;Yoon, Young Hwan;Lee, Soo Seong;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2016
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements to mechanize routine agricultural tasks. When the FEL is used with a loaded bucket, careful operation is required to maintain safety and avoid spillage when the tractor passes a bump because a change in the gravity center of the tractor due to varied loadings can affect the stability of the tractor. Use of a boom suspension system consisting of accumulators and orifice dampers can be instrumental in reducing pitching vibrations while increasing the handling performance of the FEL-mounted tractor. The objective of this research was to reduce bump shocks by adding an orifice and a flow control valve to the original hydraulic circuit composed solely of accumulators. A simulation study was performed using the SimulationX program to investigate the effects of an accumulator and an orifice-throttle damper on bump shocks. Results showed that the peak pressure on a boom cylinder and the vertical acceleration of a bucket were significantly affected by use of both an accumulator and an orifice damper. In a field test conducted with a 75-kW tractor, the peak pressure of the boom cylinder, and the root mean square (RMS) vertical acceleration of the bucket and seat were reduced by on average, 23.0, 42.2, and 44.9% respectively, as compared to those measured with the original accumulator system, showing that an improved design for the accumulator hydraulic circuit can reduce bump shocks. Further studies are needed to design a tractor suspension system that includes the effects of cabin suspension and tires as well as dynamic analysis.

A Study on the Effect of Co-operation Partners on Innovation Performance :Focused on service industry (협업 파트너가 혁신성과에 미치는 영향에 관한 연구 :서비스산업을 중심으로)

  • Jeun, Hyang-Ok;Hyun, Byung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.699-708
    • /
    • 2017
  • The service industry, as a new growth engine, has become more important in response to changes in the global economy and the industrial environment. Developed countries have promoted the competitiveness of the service industry and have enhanced economic added value. Developing new services requires extensive resources. Therefore, cooperation and network building capabilities with customers, suppliers, and various knowledge creation agencies are critical sources of competitiveness. This study classified the Korean service industry by industrial type in order to enhance innovation competence.The Korean service industry lags behind that of developed countries, and this study analyzed the differences of innovation results according to collaboration partners by the classified industry. By adopting a method that applies industrial classification by Dialogic's innovation pattern, this study showed external cooperation results were different by industrial type. Analysis results revealed that companies cooperate with customers and competitors in many cases; however, product innovation was higher for companies that collaborated with private service companies. In the 'Innovation in services' industry, industry cooperation with universities showed organizational innovation achievements. In the 'Innovation through services' industry, cooperation with customers positively affected marketing innovation achievements. Consequently, the need to foster consulting firms and universities that can professionally collaborate with companies is implied in order to enhance the Korean service industry.

A Study on the Anaerobic Treatment of the Phenol-bearing Wastewater with two Sludge Blanket-Packed Bed Reactors in Series (2단의 슬러지-고정상 반응기에서 페놀 함유 폐수의 혐시성 처리에 관한 연구)

  • 정종식;안재동;박동일;신승훈;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.1-9
    • /
    • 1995
  • This study was carried to investigate the biodegradability of phenol in the wastewater with the two sludge blanket-packed bed reactor in series. Each reactor had a dimension of 0.09 m i.d. and 1.5 m height and consisted of two regions. The lower region was a sludge blanket of 0.5 m height and the upper region was a packed-bed of 1 m height. The packed bed region was charged with ceramic raschig rings of 10 mm i.d., 15 mm o.d. and 20 mm length. The reactors were operated at 35$\circ$C and the hydraulic retention time(HRT) was maintained 24 hours. The synthetic wastewater composed of glucose and phenol as major components was fed into the reactor in a continuous mode with incereasing phenol concentration. In addition, the nutrient trace metals($Na^+, Mg^{2+}, Ca^{2+}, PO_4^{3-}, NH_4^+, Co^{2+}, Fe^{2+}$ etc.) were added for growing anaerobes. The phenol concentration of the effluent, the overall gas production, the composition of product gas, the efficiency of COD reduction and the duration of acclimation period were measured to determine the performance of the anaerobic wastewater treatment system as the phenol concentration of the influent was increased from 600 to 2400 mg//l. Successfully stable biodegradation of phenol could be achieved with the anaerobic treatment system from 600 to 1, 800 mg/l of the influent phenol concentration. The upper level of influent phenol loading was high enough to meet most of the practical requirement. The duration of acclimation increased with the phenol loading. At steady state of the influent phenol concentration of 1800 mg/l, the treatment performance indicated the phenol reduction efficiency of 99%, the COD reduction efficiency of 99% and the gas production rate of 37 l/day. At the influent phenol concentration of 2400 mg/l, however, the operation of the treatment system was noted unstable. While the concentration of methane in biogas decreased with increasing the influent phenol loading, the carbon dioxide was increased. However, the concentration of hydrogen was varied negligibly. The concentration of methane was high enough to be used as a fuel. As a result, it is suggested that anaerobic phenol wastewater treament was economical in the sense of energy recovery and wastewater treatment.

  • PDF

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

Prediction of Performance Characteristics with Various Location of Waste Heat Recovery Heat Pump in a Gwang-gyo Cogeneration Plant (냉각수 활용 히트펌프 설치 위치에 따른 광교 열병합발전소의 성능 특성 예측)

  • Park, Heun-Dong;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-Sun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 2014
  • Recently, it is considered that environment and energy are critical issues all over the world. In power generation sector in Korea, almost power stations are constructed and operated as cogeneration plants in conformity with this trend. KDHC(Korea District Heating Corporation) goes one step further adopting renewable energy technology like heat pump using wasted heat for energy-saving and environment improvement. This study investigates the performance characteristics by the location of waste heat recovery heat pumps of 5 Gcal/h capacity in 150 MW-class Gwang-gyo cogeneration plant using commercial software 'THERMOFLEX'. Prior to analysis, the simulations are performed with actual operation data, and then the validation of simulations is verified by checking the error within 2%. After verification, the simulations are carried out with 3 locations and the effect on electrical power output and heat output is analyzed. As a result, overall efficiency of cogeneration plant is the highest in the case of heat pump located before DH(District Heating) Heater because of the largest increase of heat output despite of decrease of electrical power output.

  • PDF

Importance-Performance Analysis of Operation of Specialized Complexes for Horticultural Production (원예전문생산단지 운영에 대한 중요도-만족도 분석)

  • Hong, Na-Kyoung;Rhee, Zae-Woong;Kim, Tae-Kyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • This study investigated the operation criteria of specialized complexes for horticultural production reflecting the farmers' preferences. First, the analysis of the communal activity included six factors: the group purchase of consumables for common activity, group purchase of the greenhouse apparatus, cooperative seed raising, use of a common air conditioning and heating system, cooperative shipping, and soil examination and certification system. The results of the Importance-Performance analysis can be summarized as follows. The factors requiring good management included the group purchase of consumables for common activity, group purchase of the greenhouse apparatus, and cooperative shipping. The factors with a lower priority included cooperative seed raising and the use of a common air conditioning and heating system. While the importance of the soil examination and certification system was low, the satisfaction was high, so this factor needs to be managed to avoid overkill. Second, the analysis of information exchange and education included six factors: production technique information, greenhouse facility management information, distribution-related information, production technique education, greenhouse facility management education, and distribution-related education. The results of the Importance-Performance analysis can be summarized as follows. The factor of production technique education was the most important determinant, plus the factors requiring good management included production technique information, greenhouse facility management information, and distribution-related information. The factors with a lower priority included greenhouse facility management education and distribution-related education. Therefore, to enhance productivity through facility modernization, the scaling up and creation of more specialized horticulture complexes are recommended as policy measures to gain export competitiveness. As the Korean government is expected to expand the scale of specialized horticulture complexes, the results of this paper can be widely utilized.