• Title/Summary/Keyword: co-occurrence feature

Search Result 89, Processing Time 0.029 seconds

Video image retrieval on the basis of subregional co-occurrence matrix texture features and normalised correlation (PIM 기반 국부적 Co-occurrence 행렬 및 normalised correlation를 이용한 효율적 비디오 검색 방법)

  • 김규헌;정세윤;전병태;이재연;배영래
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.601-604
    • /
    • 1999
  • This Paper proposes the simple and efficient image retrieval algorithm using subregional texture features. In order to retrieve images in terms of its contents, it is required to obtain a precise segmentation. However, it is very difficult and takes a long computing time. Therefore. this paper proposes a simple segmentation method, which is to divide an image into high and low entropy regions by using Picture Information Measure (PIM). Also, in order to describe texture characteristics of each region, this paper suggest six different texture features produced on the basis of co-occurrence matrix. For an image retrieval system, a normalised correlation is adopted as a similarity function, which is not dependent on the range of each texture feature values. Finally, this proposed algorithm is applied to a various images and produces competitive results.

  • PDF

Image Retrieval Using Color feature and GLCM and Direction in Wavelet Transform Domain (Wavelet 변환 영역에서 칼라 정보와 GLCM 및 방향성을 이용한 영상 검색)

  • 이정봉
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.585-589
    • /
    • 2002
  • In this paper, hierarchical retrieval system based on efficient feature extraction is proposed. In order to retrieval the image with robustness for geometrical transformation such as translation, scaling, and rotation. After performing the 2-level wavelet transform on image, We extract moment in low-level subband which was subdivided into subimages and texture feature, contrast of GLCM(Gray Level Co-occurrence Matrix). At first we retrieve the candidate images in database by the ones of image. To perform a more accurate image retrieval, the edge information on the high-level subband was subdivided horizontally, vertically and diagonally. And then, the energy rate of edge per direction was determined and used to compare the energy rate of edge between images for higher accuracy.

  • PDF

Texture Classification by a Fusion of Weighted Feature (가중치 특징 벡터를 이용한 질감 영상 인식 방법)

  • 정수연;곽동민;윤옥경;박길흠
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.407-410
    • /
    • 2001
  • 최근 영상 검색(retrieval)과 분류(classification)에서 질감 특징(texture feature)을 이용한 연구들이 활발하게 진행되고 있다. 본 논문에서는 효율적인 질감 특징 추출을 위해 명암도 상호발생 행렬법(gray level co-occurrence matrix)과 웨이블릿 변환(wavelet transform)을 이용하여 질감의 특징을 추출한 후 특징의 중요도에 따라서 가중치를 부여하는 방법을 제안한다. 이렇게 추출된 가중치 대표 벡터들을 기반으로 베이시안 분류기(Bayesian classifier)를 통해 임의의 질감을 인식하였다.

  • PDF

Steganalysis Based on Image Decomposition for Stego Noise Expansion and Co-occurrence Probability (스테고 잡음 확대를 위한 영상 분해와 동시 발생 확률에 기반한 스테그분석)

  • Park, Tae-Hee;Kim, Jae-Ho;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.94-101
    • /
    • 2012
  • This paper proposes an improved image steganalysis scheme to raise the detection rate of stego images out of cover images. To improve the detection rate of stego image in the steganalysis, tiny variation caused by data hiding should be amplified. For this, we extract feature vectors of cover image and stego image by two steps. First, we separate image into upper 4 bit subimage and lower 4 bit subimage. As a result, stego noise is expanded more than two times. We decompose separated subimages into twelve subbands by applying 3-level Haar wavelet transform and calculate co-occurrence probabilities of two different subbands in the same scale. Since co-occurrence probability of the two wavelet subbands is affected by data hiding, it can be used as a feature to differentiate cover images and stego images. The extracted feature vectors are used as the input to the multilayer perceptron(MLP) classifier to distinguish between cover and stego images. We test the performance of the proposed scheme over various embedding rates by the LSB, S-tool, COX's SS, and F5 embedding method. The proposed scheme outperforms the previous schemes in detection rate to existence of hidden message as well as exactness of discrimination.

A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features (명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법)

  • Kang, Seung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.870-878
    • /
    • 2013
  • In this paper, we propose a novel fingerprint classification method to enhance the accuracy and efficiency of the fingerprint identification system, one of biometrics systems. According to the previous researches, fingerprints can be categorized into the several patterns based on their pattern of ridges and valleys. After construction of fingerprint database based on their patters, fingerprint classification approach can help to accelerate the fingerprint recognition. The reason is that classification methods reduce the size of the search space to the fingerprints of the same category before matching. First, we suggest a method to extract region of interest (ROI) which have real information about fingerprint from the image. And then we propose a feature extraction method which combines gray level co-occurrence matrix (GLCM) and wavelet features. Finally, we compare the performance of our proposed method with the existing method which use only GLCM as the feature of fingerprint by using the multi-layer perceptron and support vector machine.

Non-Parametric Texture Extraction using Neural Network (신경 회로망을 사용한 비 파라메테 텍스춰 추출)

  • Jeon, Dong-Keun;Hong, Sun-Pyo;Song, Ja-Yoon;Kim, Sang-Jin;Kim, Ki-Jun;Kim, Song-Chol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.5-11
    • /
    • 1995
  • In this paper, a method using a neural network was applied for the purpose of urilizing spatial features. The adopted model of neural network the three-layered architecture, and the training algorithm is the back-propagation algorithm. Co-occurrence matrix which is generated from original imge was used for imput pattern to the neural network in order to tolerate variations of patterns like rotation of displacement. Co-occurrence matrix is explained in appendix. To evaluate this method, classification was executed with this method and texture features method over the city area and sand area, which cannot be separated with the conventional method mentioned aboved. In the results of this method and texture features proposed by Haralick the method using texture features was separation rate of 67%~89%. On the contrary, the method using neural network proposed in this research was stable and high separation rate of 80%~98%.

  • PDF

A Dependency Graph-Based Keyphrase Extraction Method Using Anti-patterns

  • Batsuren, Khuyagbaatar;Batbaatar, Erdenebileg;Munkhdalai, Tsendsuren;Li, Meijing;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1254-1271
    • /
    • 2018
  • Keyphrase extraction is one of fundamental natural language processing (NLP) tools to improve many text-mining applications such as document summarization and clustering. In this paper, we propose to use two novel techniques on the top of the state-of-the-art keyphrase extraction methods. First is the anti-patterns that aim to recognize non-keyphrase candidates. The state-of-the-art methods often used the rich feature set to identify keyphrases while those rich feature set cover only some of all keyphrases because keyphrases share very few similar patterns and stylistic features while non-keyphrase candidates often share many similar patterns and stylistic features. Second one is to use the dependency graph instead of the word co-occurrence graph that could not connect two words that are syntactically related and placed far from each other in a sentence while the dependency graph can do so. In experiments, we have compared the performances with different settings of the graphs (co-occurrence and dependency), and with the existing method results. Finally, we discovered that the combination method of dependency graph and anti-patterns outperform the state-of-the-art performances.

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.