• Title/Summary/Keyword: co-infection

Search Result 730, Processing Time 0.042 seconds

Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice

  • Byeongseok, Kim;Ki Hoon, Park;Ok-Hee, Lee;Giwan, Lee;Hyukjung, Kim;Siyoung, Lee;Semi, Hwang;Young Bong, Kim;Youngsok, Choi
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • Objective: This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. Methods: To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. Results: hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. Conclusion: In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.

Comparison of cytokine genes related with immune responses in canine macrophages using different culture models after infection with Brucella canis

  • Park, Woo Bin;Kim, Suji;Shim, Soojin;Yoo, Han Sang
    • Journal of Preventive Veterinary Medicine
    • /
    • v.43 no.4
    • /
    • pp.214-220
    • /
    • 2019
  • Although canine brucellosis has been known to be an important re-emerging zoonosis, the pathophysiological mechanisms of Brucella canis infection remains clues to be solved. Different culture models, single and co-culture models, were constructed with canine epithelial cells, D17 and macrophage, DH82 to investigate the induction of immune responses in in vivo B. canis infection. Expression of genes related with induction of immune responses, Th1, Th2 and Th17, was compared in the two different models after the bacterial infection. In this study, expression of cytokine genes, IL-1β, IL-5, IL-6, IL-10, IL-23, and TNF-α was quantified in the DH82 at different time points using RT-qPCR in the two different culture systems after the infection. Cytokine genes related with Th1, IL-1β and TNF-α and Th17, IL-6 and IL-23 were expressed with time-dependent manners in the both systems (p<0.05). However, increase of Th2-related cytokine genes expression was not detectable in the both systems by comparison with control. The expression of Th1 and Th17 related cytokine genes was earlier in single cell culture than those in co-culture model (p<0.05). In general, amounts of the expressed genes were shown higher in single cell model than those in co-culture models. This study indicate that Th1 and Th17-associated immune responses are central to B. canis infection in dogs. In addition, it suggests a specific role of epithelial cells in the B. canis infection in vivo, which should resolved in the further study.

SARS-CoV-2 Antibodies in Children with Chronic Disease from a Pediatric Gastroenterology Outpatient Clinic

  • Kaya, Gulay;Issi, Fatma;Guven, Burcu;Ozkaya, Esra;Buruk, Celal Kurtulus;Cakir, Murat
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.5
    • /
    • pp.422-431
    • /
    • 2022
  • Purpose: At the beginning of the Coronavirus disease (COVID-19) epidemic, physicians paid close attention to children with chronic diseases to prevent transmission or a severe course of infection. We aimed to measure the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels in children with chronic gastrointestinal and liver diseases to analyze the risk factors for infection and its interaction with their primary disease. Methods: This cross-sectional study analyzed SARS-CoV-2 antibody levels in patients with gastrointestinal and liver diseases (n=141) and in healthy children (n=48) between January and February 2021. Results: During the pandemic, 10 patients (7%) and 1 child (2%) had confirmed COVID-19 infection (p=0.2). The SARS-CoV-2 antibody test was positive in 36 patients (25.5%) and 11 children (22.9%) (p=0.7). SARS-CoV-2 antibody positivity was found in 20.4%, 26.6%, 33.3%, and 33.3% of patients with chronic liver diseases, chronic gastrointestinal tract diseases, cystic fibrosis, and liver transplantation recipients, respectively (p>0.05, patients vs. healthy children). Risk factors for SARS-CoV-2 antibody positivity were COVID-19-related symptoms (47.2% vs. 14.2%, p=0.00004) and close contact with SARS-CoV-2 polymerase chain reaction-positive patients (69.4% vs. 9%, p<0.00001). The use, number, and type of immunosuppressants and primary diagnosis were not associated with SARS-CoV-2 antibody positivity. The frequency of disease activation/flare was not significant in patients with (8.3%) or without (14.2%) antibody positivity (p=0.35). Conclusion: SARS-CoV-2 antibodies in children with chronic gastrointestinal and liver diseases are similar to that in healthy children. Close follow-up is important to understand the long-term effects of past COVID-19 infection in these children.

Differential Induction of PepTLP Expression via Complex Regulatory System against Fungal Infection, Wound, and Jasmonic Acid Treatment during Pre-and Post-Ripening of Nonclimacteric Pepper Fruit

  • Jeon, Woong-Bae;Kim, Kwang-Sang;Lee, Hyun-Hwa;Cheong, Soo-Jin;Cho, Song-Mi;Kim, Sun-Min;Pyo, Byoung-Sik;Kim, Ynung-Soon;Oh, Boung-Jun
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • Ripe fruit of pepper (Capsicum annuum) showed resistance to Colletotrichum gloeoporioides, but unripe fruit was susceptible. We previously isolated the PepTLP gene that induced in both unripe and ripe fruit by fungal infection and wound, and only in ripe fruit by jasmonic acid (JA) treatment. To examine further regulation of PepTLP, the action of specific agonist and antagonists of known signaling effector on the .PepTLP expression by fungal infection, wound, and JA was investigated. A similar dephosphorylation event negatively activated all the PepTLP expression in the ripe fruit by fungal infection, wound, and JA. The induction of PepTLP expression by wound is differentially regulated via phosphorylation and dephosphorylation step during pre- and post-ripening, respectively. In addition, the induction of PepTLP expression in the ripe fruit by wound and JA is differentially regulated via dephosphorylation and phosphorylation step, respectively. Only both wound and JA treatment has synergistic effect on the PepTLP expression in the unripe fruit. Both SA and JA treatments on the unripe fruit, and both wound or JA and SA on the ripe fruit could not do any effect on the expression of PepTLP. These results suggest that the induction of PepTLP expression is differentially regulated via complex regulatory system against fungal infection, wound, and JA treatment during pre- and post-ripening of pepper fruit.

SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis

  • Man Sup Kwak;Seoyeon Choi;Jiseon Kim;Hoojung Lee;In Ho Park;Jooyeon Oh;Duong Ngoc Mai;Nam-Hyuk Cho;Ki Taek Nam;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.25.1-25.17
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

One-health Approach in the Post-COVID-19 Era: Focusing on Animal Infection (One-health 관점에서 본 Post-COVID-19 시대의 동물 감염)

  • Hye-Jeong Jang;Sun-Nyoung Yu;O-Yu Kwon;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.199-207
    • /
    • 2023
  • To prepare for the threat of a future epidemic in the post-COVID-19 era, research based on the one-health concept (i.e., the health of humans, animals, and the environment as "one") is essential. Cross-species infections are being identified as a result of the high infection rate and viral load of SARS-CoV-2 in humans. The possibility of transmission of SARS-CoV-2 from humans to mink has been determined. In addition, the transmission of SARS-CoV-2 from humans to cats through contact has been considered possible. The data so far show that livestock and poultry are less likely to be infected with SARS-CoV-2. However, if infections are established through a new mutation, the resulting diseases are expected to have enormous ripple effects on various fields, such as human food security, the economy, and trade. In addition, there are concerns about the endemic prospect of SARS-CoV-2 and the high accessibility of companion animals. This is because the evolution of the virus likely occurs in animal hosts. Once SARS-CoV-2 is established in other species, they might serve as intermediate hosts for the re-emergence of the virus in the human population. Thus, it is necessary to ensure a rapid response to future outbreaks by accumulating research data on the animal infection of SARS-CoV-2. These data can have implications for the development of animal models for vaccines and therapeutics against SARS-CoV-2. Therefore, in this study, epidemiological reviews were analyzed, and response strategies against SARS-CoV-2 infection in animals were presented using the One-health approach.

Two Imported Cases of Babesiosis with Complication or Co-Infection with Lyme Disease in Republic of Korea

  • Kwon, Hea Yoon;Im, Jae Hyoung;Park, Yun-Kyu;Durey, Areum;Lee, Jin-Soo;Baek, Ji Hyeon
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.609-613
    • /
    • 2018
  • Babesiosis, caused by Babesia microti and B. divergens, is transmitted by Ixodid ticks. Symptoms of babesiosis vary from a mild flu-like illness to acute, severe, and sometimes fatal and fulminant disease. In Korea, 7 imported babesiosis cases and 1 endemic case have been reported. We report 2 cases of severe babesiosis initially mistaken as malaria. The first patient was complicated by shock and splenic infarction, the other co-infected with Lyme disease. As the population traveling abroad increases every year, physicians should be aware of babesiosis which mimics malaria, co-infection with other diseases, and its complications.

Distribution of Coagulase-Negative Staphylococci and Antibiotic Resistance

  • Park, Heechul;Park, Sung-Bae;Kim, Junseong;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.27 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • Coagulase-negative staphylococci (CoNS) are a typical group of microorganisms, and the recent advances in laboratory technology and medicine has dramatically modified their significance in medical practice. CoNS, which were previously classified as normal bacterial flora, have recently been reported to be associated with serious infectious diseases, such as surgical wound infection or periprosthetic joint infection. Representative CoNS include Staphylococcus epidermidis, S. haemolyticus, and S. saprophyticus, which are known to cause serious problems in biomaterial-based and prosthetic device infections, as well as to cause simple urinary tract infections in sexually active women. Over the last decade, the clinical isolation rate of CoNS has been increasing, and antibiotic resistance has also been occurring. This review aimed to investigate the incidence of CoNS infection and to use the results as basic data for the management of CoNS, with a focus on the isolation rate and antibiotic resistance in clinical surgery.

CGMMV Resistant Watermelon Stock

  • Sung Jegal;Jeon, Bo-Young;Her, Nam-Han;Lee, Jang-Ha;Min Jung;Ryu, Ki-Hyun;Han, Sang-Lyul;Shin, Yoon-Sup;Yang, Seung-Gyun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.73.1-73
    • /
    • 2003
  • In order to cultivate watermelon on farm, grafting of the watermelon seedling to the watermelon stock is necessary because the watermelon root is less viable than the root of watermelon stock. Recently, commercially important watermelon varieties further require a resistant stock against especially CGMMV to control the heavy loss of the total yield of watermelon by CGMMV infection. Therefore, we have set out a project to develop a CGNEMV-resistant watermelon stock. We have successfully transformed dozens of watermelon stocks (gongdae) during last two years especially using a cDNA encoding the coat protein of CGMMV (cucumber green mottle mosaic virus). Recently we have tested levels of resistance of those watermelon stocks against CGMMV infection. For CGMMV inoculation, the leaves of one month old gongdae (T1) were rubbed by carborundum mixed with the CGMMV. A total of 140 plants (T1) were exposed to the CGMMV and we found that ten plants were completely resistant to virus infection. This is the first report that by genetic engineering a cucubitaceae crop resistant to CGMMV infection is ever developed. Further information will be provided in the poster.

  • PDF