• Title/Summary/Keyword: co-infection

Search Result 740, Processing Time 0.022 seconds

Application of the Maryblyt Model for the Infection of Fire Blight on Apple Trees at Chungju, Jecheon, and Eumsung during 2015-2020

  • Ahn, Mun-Il;Yun, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.543-554
    • /
    • 2021
  • To preventively control fire blight in apple trees and determine policies regarding field monitoring, the Maryblyt ver. 7.1 model (MARYBLYT) was evaluated in the cities of Chungju, Jecheon, and Eumseong in Korea from 2015 to 2020. The number of blossom infection alerts was the highest in 2020 and the lowest in 2017 and 2018. And the common feature of MARYBLYT blossom infection risks during the flowering period was that the time of BIR-High or BIR-Infection alerts was the same regardless of location. The flowering periods of the trees required to operate the model varied according to the year and geographic location. The model predicts the risk of "Infection" during the flowering periods, and recommends the appropriate times to control blossom infection. In 2020, when flower blight was severe, the difference between the expected date of blossom blight symptoms presented by MARYBLYT and the date of actual symptom detection was only 1-3 days, implying that MARYBLYT is highly accurate. As the model was originally developed based on data obtained from the eastern region of the United States, which has a climate similar to that of Korea, this model can be used in Korea. To improve field utilization, however, the entire flowering period of multiple apple varieties needs to be considered when the model is applied. MARYBLYT is believed to be a useful tool for determining when to control and monitor apple cultivation areas that suffer from serious fire blight problems.

Enteric Pathogens in Pediatric Patients with Acute Gastroenteritis in Gyeongju, Korea: A Retrospective Study for 7 Years in a Regional Hospital

  • Cho, Seung-Man;Lee, Dong Seok;Ha, Gyoung Yim;Son, Dong-Chul;Lee, Chang Il
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.289-295
    • /
    • 2019
  • Acute diarrhea is a global health problem that causes high morbidity and mortality in children. Notably, enteric pathogen co-infections have been suggested to play an important role in gastroenteritis. In this study, we analyzed 1150 stool specimens of patients who visited the pediatric ward of Dongguk University Hospital in Gyeongju province from January 2011 to December 2017. The average isolation rate of potential stool pathogens over 7 years was 37.3% (429/1150), and coinfections were observed in 51 patients (51/429; 11.9%). In the 51 co-infection cases, the most frequent type of co-infection was found to be that of virus-bacteria (33/51). The most frequently detected bacterial pathogen among the co-infected cases was Clostridium spp. (22/51), out of which Clostridium perfringens was found to be the main pathogen (16/22; 72.7%). Escherichia coli spp. were the second most common bacterial pathogens found in 12 cases (12/51; 23.5%), with 10 cases of E. coli EPEC. Furthermore, the most frequently implicated viral pathogen among the co-infected cases was norovirus (16/51), followed by rotavirus (12/51).

Nucleic acid-based molecular diagnostic testing of SARS-CoV-2 using self-collected saliva specimens

  • Hwang, Eurim C.;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Since the outbreak of coronavirus disease 2019 (COVID-2019), the infection has spread worldwide due to the highly contagious nature of severe acute syndrome coronavirus (SARS-CoV-2). To manage SARS-CoV-2, the development of diagnostic assays that can quickly and accurately identify the disease in patients is necessary. Currently, nucleic acid-based testing and serology-based testing are two widely used approaches. Of these, nucleic acid-based testing with quantitative reverse transcription-PCR (RT-qPCR) using nasopharyngeal (NP) and/or oropharyngeal (OP) swabs is considered to be the gold standard. Recently, the use of saliva samples has been considered as an alternative method of sample collection. Compared to the NP and OP swab methods, saliva specimens have several advantages. Saliva specimens are easier to collect. Self-collection of saliva specimens can reduce the risk of infection to healthcare providers and reduce sample collection time and cost. Until recently, the sensitivity and accuracy of the data obtained using saliva specimens for SARS-CoV-2 detection was controversial. However, recent clinical research has found that sensitive and reliable data can be obtained from saliva specimens using RT-qPCR, with approximately 81% to 95% correspondence with the data obtained from NP and OP swabs. These data suggest that self-collected saliva is an alternative option for the diagnosis of COVID-19.

Sustained SARS-CoV-2 antibody response in domestic pets: Insights from a longitudinal study

  • Yeonsu Oh;Dongseob Tark;Choi-Kyu Park;Ho-Seong Cho
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.4
    • /
    • pp.335-338
    • /
    • 2023
  • The COVID-19 pandemic, triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has not only impacted human health on a global scale but also raised concerns about the vulnerability of a wide array of animals that are in close contact with humans. Particularly, the potential for infection and the subsequent immune response in domestic pets such as dogs and cats remain largely unexplored under natural living conditions. In this study, we have undertaken the task of detecting and tracking the presence of antibodies against SARS-CoV-2 in a small cohort of household pets-specifically, two dogs and two cats. Employing techniques such as the indirect ELISA and plaque reduction neutralization tests, we observed that the neutralizing antibodies against SARS-CoV-2 in these animals were maintained for a duration of up to six months following their initial positive test result. This duration mirrors the antibody response documented in human cases of COVID-19, suggesting a comparable post-infection immune response timeline between humans and these domestic animals.

Prevalence and Co-infection of Intestinal Parasites among Thai Rural Residents at High-risk of Developing Cholangiocarcinoma: A Cross-sectional Study in a Prospective Cohort Study

  • Songserm, Nopparat;Promthet, Supannee;Wiangnon, Surapon;Sithithaworn, Paiboon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6175-6179
    • /
    • 2012
  • Intestinal parasitic infections (IPIs) are still important to the health of Thai rural residents. IPIs are the cause of many chronic diseases with, for example, opisthorchiasis resulting in progression to cholangiocarcinoma (CCA). This cross-sectional study in a prospective cohort study aimed to examine the prevalence and co-infection of intestinal parasites among Northeastern Thai rural residents, recruited into the Khon Kaen Cohort Study (KKCS), and who were residing in areas of high-risk for developing CCA. On recruitment, subjects had completed questionnaires and provided fecal samples for IPI testing using the formalin ethyl acetate concentration technique. Data on selected general characteristics and the results of the fecal tests were analysed. IPI test results were available for 18,900 of cohort subjects, and 38.50% were found to be positive for one or more types of intestinal parasite. The prevalence of Opisthorchis viverrini (O. viverrini) infection was the highest (45.7%), followed by intestinal flukes (31.9%), intestinal nematodes (17.7%), intestinal protozoa (3.02%), and intestinal cestodes (1.69%). The pattern of different infections was similar in all age groups. According to a mapping analysis, a higher CCA burden was correlated with a higher prevalence of O. viverrini and intestinal flukes and a greater intensity of O. viverrini. Both prevention and control programs against liver fluke and other intestinal parasites are needed and should be delivered simultaneously. We can anticipate that the design of future control and prevention programmes will accommodate a more community-orientated and participatory approach.

Rhabdomyolysis Following SARS-CoV-2 Infection in Children: A Case Report and Systematic Review

  • Na-Won Oh;Si-Hwa Gwag;Kyu Sik Cho;Young June Choe
    • Pediatric Infection and Vaccine
    • /
    • v.31 no.1
    • /
    • pp.136-139
    • /
    • 2024
  • Rhabdomyolysis is a syndrome that causes various complications due to the release of substances from muscle cells, often associated with preceding infectious diseases. We report the case of a 7-year-old Korean boy with recent severe acute respiratory syndrome coronavirus 2 infection, presenting with fever, chills, and generalized body aches, diagnosed as rhabdomyolysis. Additionally, we conducted a systematic review with the aim of delineating the disease spectrum, treatment, and outcomes. We identified seven reports that met the inclusion criteria. Among the cases, 5 had fever, with creatine kinase levels ranging from 3,717 and 274,664 IU/L. Two individuals received treatment in intensive care unit, 2 underwent renal replacement therapy, and 1 case has deceased. For children with coronavirus disease 2019 infection and muscle pain, a thorough examination of urine color and an assessment of muscle enzymes through blood tests can help diagnose and treat rhabdomyolysis, a condition that might otherwise be overlooked.

Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper

  • Kim, Ji-Hoon;Kang, Wee-Soo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.125-135
    • /
    • 2014
  • A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds $10^{15}cells/g$ within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required.