• 제목/요약/키워드: co-expressed genes

검색결과 208건 처리시간 0.022초

시드 클러스터링 방법에 의한 유전자 발현 데이터 분석 (Gene Expression Data Analysis Using Seed Clustering)

  • 신미영
    • 전자공학회논문지CI
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2005
  • 마이크로어레이 데이터의 클러스터 분석은 생물학적으로 연관성 있는 유전자 그룹을 찾기 위해 종종 사용되는 방법이다. 기능적으로 연관된 유전자들이 대개 유사한 발현 패턴을 나타내는 특징을 이용하여 유사한 발현 프로파일을 가진 유전자 그룹을 찾아냄으로써 알려지지 않은 유전자들의 기능을 같은 그룹에 속한 다른 유전자로부터 유추할 수 있기 때문이다. 본 논문에서는 클러스터 분석을 위해 시드 클러스터링 알고리즘을 새로이 제안하고, 이 방법을 마이크로어레이 데이터 분석에 적용해본다. 시드 클러스터링 방법은 주어진 데이터를 계산적으로 분석하여 시드 패턴을 자동 추출하고, 이러한 시드 패턴을 목적 클러스터의 프로토타입 벡터로서 간주하여 클러스터를 생성하는 방법이다. 이러한 시드 클러스터링 방법은 수학적 원리에 기초하고 있기 때문에, 매우 체계적인 방법으로 안정적이며 일관성 있는 클러스터링 결과를 생성할 수 있다. 또한, 실제 마이크로어레이 데이터 분석에 적용해본 결과 데이터에 내재된 각 클러스터를 대표하는 시드 패턴을 매우 효과적으로 자동 추출할 수 있었으며, 클러스터링 결과 또한 타 방법에 비해 다소 우월한 경향을 나타내었다.

Endochitinase와 Chitobiosidase 유전자의 동시발현에 의한 키틴분해 활성의 증가 (Enhancement of chitinolytic activity of by co-expression of endochitinase and chitobiosidase genes)

  • 김정태;최신건
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.69-74
    • /
    • 2010
  • Chitinolytic activity was enhanced by coexpression of endo-chitinase gene (chiA) and chitobiosidase gene (chiB) from Serratia marcescens KFRI314 using constitutive expression vector, pHCEIA, in E. coli. Coexpression vector was constructed by inserting ribosome binding site (RBS) into junction between two chitinase genes. SDS-PAGE analyses showed that two chitinase were constitutively expressed while E. coli clones expressing two chitinases simultaneously increased halo size on colloidal chitin plate. Furthermore, the chitinolytic activities were much enhanced in coexpressed clones when degradation patterns of substrate analogues such as 4-MU-(NAG), $4-MU-(NAG)_2$,$4-MU-(NAG)_3$ were used. Consequently, the combined use of endochitinase and chitobiosidase greatly increased overall chitinolytic activities on recombinant E. coli clones.

  • PDF

식물 유용 유전자의 발굴 및 산업적 응용 (Development and industrial applications of versatile-usable genes of plant)

  • Oh, Boung-Jun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2003년도 춘계 학술발표대회
    • /
    • pp.40-60
    • /
    • 2003
  • Fruit ripening represents a genetically synchronized system that involves developmental process unique to plant species, The phenomenon of ripening includes changes in color, texture, respiration rate, flavor, and aroma. Ripe fruits generally exhibit increased susceptibility to pathogen infection. However, fruits as a reproductive organ have their own protection mechanism against pathogens to maintain their integrity during seed maturation. In several nonclimacteric fruits, such as cherry, grape, and pepper, that do not have an ethylene burst during ripening, resistance against phytopathogens increases during ripening. Colletotrichum gloeosporioides is a causal agent of anthracnose disease in pepper plants (Capsicum annuum). We have established that C. gloeosporioides has susceptible and resistant interactions with pepper fruits during pre- and post-ripening stages, respectively. And we have interested in looking for a molecular mechanism that would explain the fungal resistance during ripening of nonclimacteric pepper fruit. In this presentation, a molecular characterization of the pepper esterase gene (PepEST) that is highly expressed in the resistant response will be demonstrated as an example of development and industrial applications of versatile-usable genes of plant.

  • PDF

A Putative Early Response of Antifungal Bacillus lentimorbus WJ5 Against the Plant Pathogenic Fungus, Colletotrichum gloeosporioides, Analyzed by a DNA Microarray

  • Lee Young-Keun;Jang Yu-Sin;Chang Hwa-Hyoung;Hyung Seok Won;Chung Hye-Young
    • Journal of Microbiology
    • /
    • 제43권3호
    • /
    • pp.308-312
    • /
    • 2005
  • The global RNA transcription profiles of Bacillus lentimorbus WJ5 under an in vitro co-culture with Colletotrichum gloeosporioides were analyzed in order to study the antagonistic bacteria-fungi interactions. Using a filter membrane system, B. lentimorhus WJ5 was exposed to the spores of C. gloeosporioides at the late exponential stage. The transcription profiles of the B. lentimorhus WJ5, both with and without a challenge from C. gloeosporioides, were analyzed using custom DNA chips containing 2,000 genome fragments. A total of 337 genes were expressed, with 87 and 47 up- and down-regulated, respectively. Of these, 12 genes, which were involved in central carbon metabolisms, and 7 from minor catabolism were relatively highly up-regulated (> 10 fold) and down-regulated (< 0.2 fold), respectively. Nine genes, which were thought to be related to the antifungal activity, were also up-regulated, but their levels were not so high (2.0 - 9.7 folds). From the results, during the early stage of the co-culture of B. lentimorbus WJ5 and C. gloeosporioides, nutrient competition seemed to occur; therefore, the genes from central carbon metabolisms could be up-regulated, while those from minor catabolism could be down-regulated.

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

Bacillus lentimorbus WJ5의 감마선유도 돌연변이체들에서 공통으로 발현되는 방사선 관련 유전자의 microarray 분석 (Microarray Analysis of Radiation Related Gene Expression in Mutants of Bacillus lentimorbus WJ5 Induced by Gamma Radiation)

  • 이영근;장화형;장유신;허재호;형석원;정혜영
    • 환경생물
    • /
    • 제22권3호
    • /
    • pp.472-477
    • /
    • 2004
  • 본 연구에서는 감마선으로 유도된 돌연변이체들에서 공통으로 발현되는 방사선 관련 유전자들의 발현을 연구하기 위하여, B. lentimorbus WJ5 의 방사선 유도 돌연변이체에서 발현되는 유전자를 DNA microarray로 동시에 탐색하였다. DNA microarray는 B. lentimorbus WJ5 genome을 무작위로 절단하여 2,000 단편으로 구성하였으며, 감마선 $(^{60}/Co)$으로 유도된 7 돌연변이체의 발현을 정량적으로 관찰하였다. 클러스터 분석결과 발현된 408 유전자 중 27개가 감마선 유도 돌연변이체 모두에서 유의하게 발현이 증가되었다. 특히, 복구(mutL, mutM) 에너지 대사 (acsA, sdhB, pgk, yhjB, citB), protease (npr), 산화자극에 대한 환원 (HMM)관련 유전자들이 동시에 증가되었다. 이는 감마선 유도 돌연변이체들에서 자발적인 직/간접 복구 관련 유전자의 발현 증가는 방사선 노출 직후 보이는 stress response와는 다른 현상임을 나타내는 것으로 생각된다.

Genome-wide identification and expression profiling of the pectin methylesterase gene family in Citrus sinensis (L.) Osbeck

  • Ho Bang Kim;Chang Jae Oh;Nam-Hoon Kim;Cheol Woo Choi;Minju Kim;Sukman Park;Seong Beom Jin;Su-Hyun Yun;Kwan Jeong Song
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.271-291
    • /
    • 2022
  • Pectin methylesterase (PME) plays an important role in vegetative and reproductive development and biotic/abiotic stress responses by regulating the degree of methyl-esterification of pectic polysaccharides in the plant cell wall. PMEs are encoded by a large multigene family in higher land plant genomes. In general, the expression of plant PME genes shows tissue- or cell-specific patterns and is induced by endogenous and exogenous stimuli. In this study, we identified PME multigene family members (CsPMEs) from the sweet orange genome and report detailed molecular characterization and expression profiling in different citrus tissues and two fruit developmental stages. We also discussed the possible functional roles of some CsPME genes by comparing them with the known functions of PMEs from other plant species. We identified 48 CsPME genes from the citrus genome. A phylogenetic tree analysis revealed that the identified CsPMEs were divided into two groups/types. Some CsPMEs showed very close phylogenetic relationships with the PMEs whose functions were formerly addressed in Arabidopsis, tomato, and maize. Expression profiling showed that some CsPME genes are highly or specifically expressed in the leaf, root, flower, or fruit. Based on the phylogenetic relationships and gene expression profiling results, we suggest that some CsPMEs could play functional roles in pollen development, pollen tube growth, cross incompatibility, root development, embryo/seed development, stomata movement, and biotic/abiotic stress responses. Our results shed light on the biological roles of individual CsPME isoforms and contribute to the search for genetic variations in citrus genetic resources.

Deciphering the Core Metabolites of Fanconi Anemia by Using a Multi-Omics Composite Network

  • Xie, Xiaobin;Chen, Xiaowei
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.387-395
    • /
    • 2022
  • Deciphering the metabolites of human diseases is an important objective of biomedical research. Here, we aimed to capture the core metabolites of Fanconi anemia (FA) using the bioinformatics method of a multi-omics composite network. Based on the assumption that metabolite levels can directly mirror the physiological state of the human body, we used a multi-omics composite network that integrates six types of interactions in humans (gene-gene, disease phenotype-phenotype, disease-related metabolite-metabolite, gene-phenotype, gene-metabolite, and metabolite-phenotype) to procure the core metabolites of FA. This method is applicable in predicting and prioritizing disease candidate metabolites and is effective in a network without known disease metabolites. In this report, we first singled out the differentially expressed genes upon different groups that were related with FA and then constructed the multi-omics composite network of FA by integrating the aforementioned six networks. Ultimately, we utilized random walk with restart (RWR) to screen the prioritized candidate metabolites of FA, and meanwhile the co-expression gene network of FA was also obtained. As a result, the top 5 metabolites of FA were tenormin (TN), guanosine 5'-triphosphate, guanosine 5'-diphosphate, triphosadenine (DCF) and adenosine 5'-diphosphate, all of which were reported to have a direct or indirect relationship with FA. Furthermore, the top 5 co-expressed genes were CASP3, BCL2, HSPD1, RAF1 and MMP9. By prioritizing the metabolites, the multi-omics composite network may provide us with additional indicators closely linked to FA.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Metabolic Engineering of Escherichia coli for Production of Polyhydroxyalkanoates with Hydroxyvaleric Acid Derived from Levulinic Acid

  • Kim, Doyun;Lee, Sung Kuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.110-116
    • /
    • 2022
  • Polyhydroxyalkanoates (PHAs) are emerging as alternatives to plastics by replacing fossil fuels with renewable raw substrates. Herein, we present the construction of engineered Escherichia coli strains to produce short-chain-length PHAs (scl-PHAs), including the monomers 4-hydroxyvalerate (4HV) and 3-hydroxyvalerate (3HV) produced from levulinic acid (LA). First, an E. coli strain expressing genes (lvaEDABC) from the LA metabolic pathway of Pseudomonas putida KT2440 was constructed to generate 4HV-CoA and 3HV-CoA. Second, both PhaAB enzymes from Cupriavidus necator H16 were expressed to supply 3-hydroxybutyrate (3HB)-CoA from acetyl-CoA. Finally, PHA synthase (PhaCCv) from Chromobacterium violaceum was introduced for the subsequent polymerization of these three monomers. The resulting E. coli strains produced four PHAs (w/w% of dry cell weight): 9.1 wt% P(4HV), 1.7 wt% P(3HV-co-4HV), 24.2 wt% P(3HB-co-4HV), and 35.6 wt% P(3HB-co-3HV-co-4HV).