• Title/Summary/Keyword: co-design

Search Result 7,441, Processing Time 0.039 seconds

Integrated Automation System of Pattern Design and $CO_2$ Laser Cutting for Diving Suits (잠수복 패턴 자동 설계 및 $CO_2$ 레이저 절단을 위한 통합 시스템 개발)

  • 윤세봉;강병수;강재관;김여숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.409-412
    • /
    • 2004
  • In this paper, an integrated automation system of pattern design and $CO_2$ laser cutting for diving suits is presented. Pattern design includes grading which creates a full-size range from a base pattern. Tool path for laser cutting from the patterns is generated in G-code format. $CO_2$ Laser cutting machine is developed to help cut the patterns with accuracy and speed. Aluminum profiles, ball screws, and stepping motors are engaged into the machine as frame structure, transfer unit, and driving devices respectively. The developed system is tested in dry suit cutting, convincing it can be readily introduced in driving suits manufacturing with respect to cost and efficiency.

  • PDF

Some practical design aspects of appendages for passenger vessels

  • Jang, Hag-Soo;Lee, Hwa-Joon;Joo, Young-Ryeol;Kim, Jung-Joong;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.50-56
    • /
    • 2009
  • The hydrodynamic effect of appendages for high-speed passenger vessels, such as Ro-Pax, Ro-Ro and cruiser vessels, is very severe and, therefore, it is essential to carry out the design of appendages for high-speed passenger vessels from the preliminary design stage to the final detail design stage through a full survey of the reference vessels together with sufficient technical investigation. Otherwise, many problems would be caused by mismatches between the appendages and the hull form. This paper investigates the design characteristics of some appendages, such as the side thruster, the shaft-strut, and the stern wedge, based on the design experience accumulated at Samsung, on CFD, and on model test results for high-speed passenger vessels. Further to this investigation, some practical and valuable design guidelines for such appendages are suggested.

A CO2 Emission Reduction Method through Correlation Analysis of Design Parameters in Buildings (건축물 설계변수의 상관관계 분석을 통한 CO2 배출저감 방안)

  • Lee, Hyun-Woo;Chae, Min-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.100-106
    • /
    • 2011
  • This study proposes a $CO_2$ emission reduction method through correlation analysis of a sample building. First, energy saving factors of heating, cooling, lighting were determined for the correlation analysis and $CO_2$ emission contribution rate of the design parameters have been analyzed. Then optimal combination of each design parameter has been drawn. Heat transfer coefficient of walls and windows, air permeability, windows area ratio, and shading devices were selected as applicable energy saving factors of the sample building. Also computer simulation was conducted using experimental design by Orthogonal Arrays of the statistical method. And the contribution rate was estimated by Analysis of Variance-ANOVA. As a result, the $CO_2$ emission in heating was reduced to 51.9%; in cooling to 16.8%; and in lighting to 2% compared to the existing building. The majority of the reduction was presented by heating energy.

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

A Case Study in Engineering Design of Vehicle Aerodynamics Course by CO2 Model Dragster (CO2 모형 경주차를 이용한 차량 공기역학의 공학설계 사례연구)

  • Jang, Hyun-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2750-2757
    • /
    • 2010
  • Recently, there have been a number of voices from industry that automotive education at the college is too theoretical and so college graduates are lack of practical ability to apply the automotive idea to actual systems. In order to educate engineering students design qualities in creative problem solving, this paper reports the results of employing engineering design projects in a Motor sports course of at A College. This paper presents design creterion and manufacture process of $CO_2$ model dragster, measures $CO_2$ model dragster speed and aerodynamic drag. In order to investigate the impact of engineering design on student's learning, a survey was conducted in 2008 spring semester. According to the results of survey analyses, student's key competencies and satisfaction reports high values on engineering design projects.

Design Approach of Concrete Structures Considering the Targeted CO2 Reduction (목표 탄소배출량 저감을 고려한 콘크리트 구조물의 설계 절차)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • The objective of this study is to present the design approach of low $CO_2$ concrete structures for reduction of $CO_2$ emissions. The design approach was implemented considering the system boundary for each processing presented in the ISO 13315-2. As for life-cycle inventory(LCI) for $CO_2$ assessment of concrete structures, data provided from domestic LCI DB was used. Based on the process presented in this study, case studies on the life-cycle $CO_2$ assessment of shear wall concrete structure was conducted. As substitution level of GGBS is 25%, the amount of $CO_2$ emissions and $CO_2$ uptake by concrete carbonation was decreased in the material, demolition and crushing, and transport phase. The amount of $CO_2$ emissions of column and total member was decreased by 26% and 22% respectively, compared to that of OPC.

A CAE System for Motor Design (모터 설계를 위한 CAE 시스템 개발)

  • Choi, Hong-Soon;Chang, Kyung-Woon;Kim, Deok-Geun;Yoon, Joong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.60-62
    • /
    • 2001
  • In this paper, a CAE system, $MotorPro^{(TM)}$, is presented for motor design. It is composed of equivalent magnetic circuit method and finite element method. It provides fully automated finite element method that takes only a few seconds to a few minutes. Using this system. 18kw brushless DC motor is dealt as design example.

  • PDF

CO2 Emissions Evaluation for Steel Reinforced Concrete Columns Based on the Optimal Structural Design (최적구조설계를 이용한 SRC 기둥의 CO2 배출량 평가)

  • Choi, Se Woon;Jeon, Ji Hye;Lee, Hwanyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.335-342
    • /
    • 2013
  • Since the seriousness of environmental pollution came to the fore recently, various efforts have been made globally for the reduction of the environmental load. In particular, in the field of construction, an industry responsible for a considerable amount of pollution, studies have been actively conducted to reduce $CO_2$ emissions and energy consumption. However, most conventional research about pollution as it relates to construction is focused on the maintenance stages where $CO_2$ emissions are the greatest. Research related to the design stage is in its infancy, as it has only been conducted thus far on steel buildings and RC buildings. In fact, in order to achieve environmentally friendly construction considering the Life Cycle Assessment(LCA), the building design should be derived to reduce the $CO_2$ emissions from the early building design stage, and structural engineers should be able to suggest a design plan considering its environmental friendliness. In this study, optimal structural design method for steel reinforced concrete(SRC) columns considering $CO_2$ emissions is presented. The trends of $CO_2$ emissions in SRC columns according to the variations of steel shapes, concrete strengths and loads are investigated.

A Study on the Direct Discharge Test for Verifying Design Concentration and Soaking Time for CO2 Fire Extinguishing System of Total Flooding (전역방출방식 CO2 소화설비의 설계농도 및 유지시간 검증을 위한 직접방사실험에 관한 연구)

  • Lee, Se-Myeoung;Moon, Sung-Woong;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.15-23
    • /
    • 2012
  • Indirect Test Method is often used instead of direct test method in test method for extinguishing performance of $CO_2$ extinguishing facility because of high cost, environment problems and difficulties of procedure. But in the danger facilities for a unit of nation, such as a petrochemical plant, a nuclear power plant, or etc. is better to verify the performance of the extinguishment through direct discharge test. In $CO_2$ extinguishing system for total flooding system installed in dangerous facilities in Korea, each protected area in surface fire and deep-seated fire had selected and verified of extinguishing performance of $CO_2$ extinguishing facilities. To get recognized as extinguishing performance, discharged $CO_2$ concentration to protected area should be equivalence with design concentration standards (NFSC and NFPA). The Design Concentration means that $CO_2$ extinguishing agent is considerate of concentration for percentage of allowance (20 %) from extinguishing concentration which available to control of flame. As test result, surface fire and deep seated fire in protected area is obtained $CO_2$ design concentration and maintained design concentration more than 20 minutes as deep-seated fire. Through this study, we introduced direct discharging test method and decision method. And furthermore, especially in the dangerous facilities as a unit of Nation, we suggested necessity about reliability of extinguishing facilities to use direct test method.

New Fashion Products Development through Consumer Co-Creation

  • Jaekyong Lee;Ho Jung Choo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.475-491
    • /
    • 2023
  • New product development (NPD) is crucial for fashion brands as they are required to constantly innovate in product design and technology to remain competitive in the global fashion market. In this study, we investigated the co-creative new fashion product development (NFPD) process to understand its structural characteristics and examined the components of this business model through case studies. Fashion companies frequently collaborate with consumers to create unique and innovative fashion items that both satisfy consumer demand and expand their economic potential. Base on case studied involving consumer participation in NFPD, our study analyzed the structural characteristics of the co-creative NFPD process. Consequently, our investigation identified five key factors of the co-creative NFPD business model: co-value, co-creator, co-activity, co-platform, and co-partner. The co-creation approach established in this study will help advance research on new fashion strategies and provide foundational information for Korean fashion companies that are facing an increasingly competitive global market, thus making a significant contribution to the literature.