• Title/Summary/Keyword: co-axial flow

Search Result 81, Processing Time 0.03 seconds

Study on the flow and noise characteristic analysis for cooling fan in a server computer (서버용 냉각팬의 유동 및 소음 특성 분석에 관한 연구)

  • Lim, Tae-Gyun;Jeon, Wan-Ho;Hong, Hyun-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.773-778
    • /
    • 2014
  • Recently both high performance and low noise for a cooling fan used in a server computer have been required. In this study, we measured the noise characteristics for a small cooling fan used in a computer or in a server, and compared the computational data to measured ones. SC/Tetra V10 and FlowNoise V4.3 was used for the unsteady flow field and the aeroacoustic analysis, respectively. The aeroacoustic analysis results have the good agreement with measured data within 3% errors in overall SPL. In the noise spectrum, we could find the peak tonal noise at lower frequency than 1st BPF, and confirm that the reason is caused by the asymmetry of bell mouth shape.

  • PDF

저속축류형 $CO_2$ 레이저의 개발

  • 장근호;김도열;송정태;최흥근;이병하
    • 전기의세계
    • /
    • v.36 no.10
    • /
    • pp.728-736
    • /
    • 1987
  • 본연구는 비금속 재료 가공에 적합한 100W 출력의 저속축류형 (Slow Axial flow type) CO$_{2}$ 레이저를 제작한 것이다. 최대 출력은 CO$_{2}$;N$_{2}$;He의 비 (ratio)가 1:6:13이고, 관내 압력이 23.5Torr, 냉각온도 25.deg. C, 방전전류 64mA 일때 방전 개시 전압은 20KVDC, 방전 유지 전압은 10KVDC이었으며 최대출력 100w를 얻었다.

  • PDF

Meanline Analysis Method for Performance Analysis of a Multi-stage Axial Turbine in Choking Region (다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법)

  • Kim, Sangjo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.20-28
    • /
    • 2018
  • In general, the choking phenomenon occurs due to the flow acceleration of a turbine under high pressure-ratio. During choking, the total pressure ratio increases without any variation in the mass flow rate. It is difficult to predict choking characteristics by using conventional meanline analysis, which utilizes mass flow inlet boundary condition. In this study, an algorithm for predicting the choking point is developed to solve this problem. In addition, a performance estimation algorithm is presented to estimate the performance after choking, based on the flow behavior of flow expansion at the choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate this method.

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree (메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

Numerical Simulation of NO Emission and Combustion Characteristics in Furnace (연소로에서 NO 배출 및 연소특성에 대한 수치해석적 연구)

  • 전영남
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.577-585
    • /
    • 1996
  • A screening study was performed in order to resolve the flow, combustion and emission characteristics of the gas furmace with co-axial diffusion flane burner. A control-valume based finite-difference method with the power-law scheme was employed for discretization. Numerical procedure for the differential equation was used by SIMPLEST to enclosute rapid converge. A k-.varepsilon. model was incorporated for the closure of turbulence. The mass fraction and mixture fraction were calculated by cinserved scalar method. An equilibrium analysis was employed to determine the concentration of radicals in the product stream and conserbation equations were them solved for N amd NO by Zelovich reaction scheme. The method was exercised in a simple one-dimensional case first, to determine the effects of air ratio, temperature and residence time on NO formation and applied to a furnace with co-axial diffusion flame burner.

  • PDF

DNS of turbulent concentric annular pipe flow (동심 환형관 내의 난류유동의 직접수치모사)

  • Chung, Seo-Yoon;Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.461-466
    • /
    • 2000
  • Direct numerical simulations (DNS) is carried out to study fully-developed turbulent concentric annular pipe flow with two radius ratios at $Re_{Dh}\;=\;8900$. In case of $R_1/R_2\;=\;0.5$, the present result for the mean flow is in good agreement with the previous experimental data. Because of the transverse curvature effects, the distributions of mean flow and turbulent intensities are asymmetric in contrast to those of other fully-developed flows (channel and pipe flow). From the distributions of skewness of radial velocity fluctuations, it co be identified that all of the characteristics of channel, pipe and turbulent flow on a cylinder in axial flow can be appeared in concentric annular pipe flow.

  • PDF

Numerical Study on Hydraulic Fluid Flows Within Axial Piston Pumps (액셜 피스톤 펌프내 유압유 유동에 대한 수치해석적 연구)

  • Jeong, Jong-Hyun;Kim, Jong-Ki;Suh, Yong Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Axial piston pumps have been widely used as power sources for hydraulic systems, but studies on the fluid flow within the pump have been usually performed using 1-D analysis because of the difficulties in considering the fluid compressibility, high-speed revolution, variation of the flow rate, and complicated geometry. The goal of this study was to understand the hydraulic fluid flow within axial piston pumps by using the 3-D numerical method and the process of generating discharge pressure ripples. To improve the convergence and robustness of the simulation model, a grid system was constructed with hexahedron-type grids around the valve plate. Furthermore, we employed an empirical formula to describe the relationship between the oil density and pressure. The CFD (computational fluid dynamics) results compared well with the experimental data.

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

A Numerical study on current density and temperature distributions of IT-SOFC (IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF