DOI QR코드

DOI QR Code

Meanline Analysis Method for Performance Analysis of a Multi-stage Axial Turbine in Choking Region

다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법

  • Kim, Sangjo (Gas Turbine System Integration Team, Doosan Heavy Industries and Construction Co., Ltd.)
  • Received : 2017.06.03
  • Accepted : 2017.08.22
  • Published : 2018.04.01

Abstract

In general, the choking phenomenon occurs due to the flow acceleration of a turbine under high pressure-ratio. During choking, the total pressure ratio increases without any variation in the mass flow rate. It is difficult to predict choking characteristics by using conventional meanline analysis, which utilizes mass flow inlet boundary condition. In this study, an algorithm for predicting the choking point is developed to solve this problem. In addition, a performance estimation algorithm is presented to estimate the performance after choking, based on the flow behavior of flow expansion at the choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate this method.

일반적으로 다단 축류 터빈은 높은 팽창비에서 유동 가속으로 인하여 특정 단에서 초킹 현상이 발생하게 된다. 입구 유량 경계조건을 사용하는 일반적인 평균반경해석법을 사용하는 경우 유량 변화없이 팽창비만 증가하게 되는 초킹 현상을 예측하는데 한계가 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 초킹 영역에서의 성능을 예측하는 알고리즘을 제안하였다. 초킹 지점 이후에는 초킹이 발생하는 노즐 혹은 로터 출구 유동이 팽창하는 특성을 반영하여 고정된 유량 조건에서 팽창비가 변할 수 있도록 알고리즘을 구성하였다. 계산된 결과를 다단 축류 터빈 전산해석 결과 및 실험결과와 비교하여 신뢰성을 확인하였다.

Keywords

References

  1. Kong, C., Ki, J. and Kang, M., "A New Scaling Method for Component Maps of Gas Turbine Using System Identification," Journal of Engineering Gas Turbines Power, Vol. 125, No. 4, pp. 979-985, 2003. https://doi.org/10.1115/1.1610014
  2. Steinke, R.J., "A Computer Code for Predicting Multistage Axial-Flow Compressor Performance by a Meanline Stage-Stacking Method," NASA TM-2020, 1982.
  3. Glassman, A.J., "Users Manual and Modeling Improvements for Axial Turbine Design and Performance Computer Code TD2-2," NASA CR-189118, 1992.
  4. Flagg, E.E., "Analytical Procedure and Computer Program for Determining the Off-Design Performance of Axial Flow Turbines," NASA CR-710, 1967.
  5. Glassman, A.J, "Modeling Improvements and Users Manual for Axial-Flow Turbine Off-Design Computer Code AXOD," NASA CR-195370, 1994.
  6. Chen, S.S, "Capability Extension to the Turbine Off-Design Computer Program AXOD With Applications to the Highly Loaded Fan-Drive Turbines," NASA TM-2011-217129, 2011.
  7. Hendricks, E.S., "Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code," 54th AIAA Aerospace Sciences Meeting, San Diego, C.A., U.S.A., AIAA 2016-0119, Jan. 2016.
  8. Sellers, J.F. and Daniele, C.J., "DYNGEN: A program for calculating steady-state and transient performance of turbojet and turbofan engines," NASA TN-7901, 1975.
  9. Tournier, J.M. and El-Genk, M.S., "Axial Flow, Multi-Stage Turbine and Compressor Models," Energy Conversion and Management, Vol. 51, No. 1, pp. 16-29, 2010. https://doi.org/10.1016/j.enconman.2009.08.005
  10. Bang, M.H., "Effect of combustor exit flow and endwall leakage flow on a multi-stage turbine system," Ms degree, School of Mechanical Engineering, Pusan National University, Pusan, Korea, 2015.
  11. Petrovic, M.V., Wiedermann, A. and Banjac, M.B., "Development and Validation of a New Universal Through Flow Method for Axial Compressors.," Proceedings of ASME Turbo Expo 2009, Orlando, F.L., U.S.A., GT 2009-59938, Jun. 2009.
  12. Evans, D.C. and Hill, J.M., "Experimental Investigation of a 4.5-stage Turbine with Very High Stage Loading Factor I - Turbine Design," NASA CR-2140, 1973.
  13. Walket, N.D. and Tbomas, M.W., "Experimental Investigation of a 4.5-stage Turbine with Very High Stage Loading Factor II - Turbine Performance," NASA CR-2363, 1974.