최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.
최근 화두가 되고 있는 AI분야에서 가장 큰 문제점은 학습데이터의 부족 문제를 꼽을 수 있다. 수동 데이터 구축에는 많은 시간과 노력이 소요되기에 개인이 손쉽게 필요 데이터를 구축하기는 매우 어렵다. 반면, 수동 데이터 구축에 비해 자동으로 구축하는 것은 높은 품질을 유지하는 것이 관건이다. 본 논문에서는 한국어 음성 명령어 인식기 개발에 필요한 데이터를 웹에서 자동으로 추출하고, 학습데이터로 사용할 수 있는 데이터를 자동으로 선별하는 방법을 소개한다. 특히, 자동 구축된 한국어 음성 데이터를 대상으로 우수한 성능을 보이는 ResNet기반의 수정 모델을 기반으로, 건강 및 일상생활도메인의 명령어 셋을 대상으로 적용가능성을 보이기 위한 실험을 진행하였다. 자동으로 구축된 데이터만을 사용한 일련의 실험에서 건강도메인은 ResNet15에서 89.5%, 일상생활도메인에서는 ResNet8에서 82%의 정확도를 보임으로써, 자동 수집 데이터의 활용 가능성을 검증하였다.
본 연구의 목적은 수업 시 스마트기기에 적용할 수 있는 나무 이미지를 인식하고 분류하여 정확도를 측정할 수 있는 효율적인 모델을 제안하는 것이다. 2015개정 교육과정으로 개정되면서 초등학교 4학년 과학교과서의 학습 목표에서 스마트 기기 사용한 식물 인식이 새롭게 추가 되었다. 특히 나무 인식의 경우 다른 사물 인식과 달리 수형, 수피, 잎, 꽃, 열매의 부위별 특징이 있으며, 계절에 따라 모양 및 색깔의 변화를 거치므로 인식률에 차이가 존재한다. 그러므로 본 연구를 통해 컨볼루션 신경망 기반의 사전 학습된 인셉션V3모델을 이용하여 재학습 전 후의 나무 부위별 인식률을 비교한다. 또한 각 나무의 유형별 이미지 정확도를 결합시키는 방식을 통해 효율적인 나무 분류 방안을 제시하며 교육현장에서 사용하는 스마트기기에 적용 할 수 있을 것이라 기대한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권3호
/
pp.1086-1103
/
2020
The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.
본 연구에서는 이진 가중치 신경망(BWN)을 부동소수점 데이터를 사용하여 학습시킨 후에, 학습된 파라미터와 주요연산을 고정소수점으로 근사화시키는 과정에서 정확도의 변화를 분석하였다. 신경망을 이루고 있는 각 계층의 입력 데이터와 컨볼루션 연산의 계산에 고정소수점 수를 사용했으며, 이때 고정소수점 수의 전체 bit 수와 소수점 이하 bit 수에 변화를 주면서 정확도 변화를 관찰하였다. 각 계층의 입력 값과 중간 계산값의 정수 부분의 손실이 발생하지 않으면 고정소수점 연산을 사용해도 부동소수점 연산에 비해 큰 정확도 감소가 없었다. 그리고 오버플로가 발생하는 경우에 고정소수점 수의 최대 또는 최소값으로 근사시켜서 정확도 감소를 줄일 수 있었다. 이 연구결과는 FPGA 기반의 BWN 가속기를 구현할 때에 필요한 메모리와 하드웨어 요구량을 줄이는 데 사용될 수 있다.
Planetary global localization is necessary for long-range rover missions in which communication with command center operator is throttled due to the long distance. There has been number of researches that address this problem by exploiting and matching rover surroundings with global digital elevation maps (DEM). Using conventional methods for matching, however, is challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM low resolution, rover image illumination variations and small terrain features. In this work, we use train CNN discriminator to match rover 2D image with DEM rendered images using conditional Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and orientation. We demonstrate our network capability to learn to translate rover image into DEM simulated image and match them using Devon Island dataset. The experimental results show that our proposed approach achieves ~74% mean average precision.
본 논문에서는 딥러닝의 회선신경망을 이용한 실제 소셜 네트워크 상의 이미지 분류가 얼마나 효과적인지 알아보기 위한 실험을 수행하고, 그 결과와 그를 통해 알게 된 교훈에 대해 소개한다. 이를 위해 ImageNet Large Scale Visual Recognition Challenge(ILSVRC)의 2012년 대회와 2015년 대회에서 각각 우승을 차지한 AlexNet 모델과 ResNet 모델을 이용하였다. 평가를 위한 테스트 셋으로 인스타그램에서 수집한 이미지를 사용하였으며, 12개의 카테고리, 총 240개의 이미지로 구성되어 있다. 또한, Inception V3모델을 이용하여 fine-tuning을 실시하고, 그 결과를 비교하였다. AlexNet과 ResNet, Inception V3, fine-tuned Inception V3 이 네 가지 모델에 대한 Top-1 error rate들은 각각 49.58%, 40.42%, 30.42% 그리고 5.00%로 나타났으며, Top-5 error rate들은 각각 35.42%, 25.00%, 20.83% 그리고 0.00%로 나타났다.
본 논문에서는 조류와 양서류 울음소리의 구별 정확도를 높이기 위해 게이트 선형유닛과 자가주의 집중 모듈을 활용해서 데이터의 중요한 부분을 중심으로 특징 추출 및 데이터 프레임의 중요도를 판별해 구별 정확도를 높인다. 이를 위해 먼저 1차원의 음향 데이터를 로그 멜 스펙트럼으로 변환한다. 로그 멜 스펙트럼에서 배경잡음같이 중요하지 않은 정보는 게이트 선형유닛을 거쳐 제거한다. 그러고 난 뒤 시간 축에 자가주의집중기법을 적용해 구별 정확도를 높인다. 사용한 데이터는 자연환경에서 멸종위기종을 포함한 조류 6종의 울음소리와 양서류 8종의 울음소리로 구성했다. 그 결과, 게이트 선형유닛 알고리즘과 시간 축에서 자가주의집중을 적용한 구조의 평균 정확도는 조류를 구분했을 때 91 %, 양서류를 구분했을 때 93 %의 분류율을 보였다. 또한, 기존 알고리즘보다 약 6 % ~ 7 % 향상된 정확도를 보이는 것을 확인했다.
본 연구에서는 향상된 내구성을 가진 고효율 전자파차폐용 랜덤배향 시트 소재를 개발하기 위해 구리(Copper: Cu)와 니켈 (Nickel: Ni)이 코팅된 탄소섬유(Carbon fiber: CF)와 같은 하이브리드 소재를 습식공정을 통해 제조 하였다. 제조된 시트 소재는 69.4~93.0 dB의 높은 전자파 차폐효율을 보여주었다. 또한 하이브리드 금속으로 코팅된 Ni-Cu/CFs 시트는 Ni표면의 유효한 부식저항성과 기계적 저항성 때문에 가혹한 화학적/열적 환경하에서 매우 우수한 내구성을 보여주었다. 이와 관련하여 Ni-Cu/CF 시트는 Cu/CF 시트와 비교하여 1.7배 긴 수명을 가지는 것을 확인하였다.
Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
농업과학연구
/
제47권3호
/
pp.633-644
/
2020
Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.