• 제목/요약/키워드: cnn

검색결과 2,164건 처리시간 0.034초

표정 분류 연구 (Analysis of facial expression recognition)

  • 손나영;조현선;이소현;송종우
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.539-554
    • /
    • 2018
  • 최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.

An Automatic Data Construction Approach for Korean Speech Command Recognition

  • Lim, Yeonsoo;Seo, Deokjin;Park, Jeong-sik;Jung, Yuchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.17-24
    • /
    • 2019
  • 최근 화두가 되고 있는 AI분야에서 가장 큰 문제점은 학습데이터의 부족 문제를 꼽을 수 있다. 수동 데이터 구축에는 많은 시간과 노력이 소요되기에 개인이 손쉽게 필요 데이터를 구축하기는 매우 어렵다. 반면, 수동 데이터 구축에 비해 자동으로 구축하는 것은 높은 품질을 유지하는 것이 관건이다. 본 논문에서는 한국어 음성 명령어 인식기 개발에 필요한 데이터를 웹에서 자동으로 추출하고, 학습데이터로 사용할 수 있는 데이터를 자동으로 선별하는 방법을 소개한다. 특히, 자동 구축된 한국어 음성 데이터를 대상으로 우수한 성능을 보이는 ResNet기반의 수정 모델을 기반으로, 건강 및 일상생활도메인의 명령어 셋을 대상으로 적용가능성을 보이기 위한 실험을 진행하였다. 자동으로 구축된 데이터만을 사용한 일련의 실험에서 건강도메인은 ResNet15에서 89.5%, 일상생활도메인에서는 ResNet8에서 82%의 정확도를 보임으로써, 자동 수집 데이터의 활용 가능성을 검증하였다.

Deep Learning Based Tree Recognition rate improving Method for Elementary and Middle School Learning

  • Choi, Jung-Eun;Yong, Hwan-Seung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.9-16
    • /
    • 2019
  • 본 연구의 목적은 수업 시 스마트기기에 적용할 수 있는 나무 이미지를 인식하고 분류하여 정확도를 측정할 수 있는 효율적인 모델을 제안하는 것이다. 2015개정 교육과정으로 개정되면서 초등학교 4학년 과학교과서의 학습 목표에서 스마트 기기 사용한 식물 인식이 새롭게 추가 되었다. 특히 나무 인식의 경우 다른 사물 인식과 달리 수형, 수피, 잎, 꽃, 열매의 부위별 특징이 있으며, 계절에 따라 모양 및 색깔의 변화를 거치므로 인식률에 차이가 존재한다. 그러므로 본 연구를 통해 컨볼루션 신경망 기반의 사전 학습된 인셉션V3모델을 이용하여 재학습 전 후의 나무 부위별 인식률을 비교한다. 또한 각 나무의 유형별 이미지 정확도를 결합시키는 방식을 통해 효율적인 나무 분류 방안을 제시하며 교육현장에서 사용하는 스마트기기에 적용 할 수 있을 것이라 기대한다.

Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network

  • Shang, Jiaze;An, Weipeng;Liu, Yu;Han, Bang;Guo, Yaodan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1086-1103
    • /
    • 2020
  • The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.

이진 가중치 신경망의 하드웨어 구현을 위한 고정소수점 연산 정확도 분석 (Accuracy Analysis of Fixed Point Arithmetic for Hardware Implementation of Binary Weight Network)

  • 김종현;윤상균
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.805-809
    • /
    • 2018
  • 본 연구에서는 이진 가중치 신경망(BWN)을 부동소수점 데이터를 사용하여 학습시킨 후에, 학습된 파라미터와 주요연산을 고정소수점으로 근사화시키는 과정에서 정확도의 변화를 분석하였다. 신경망을 이루고 있는 각 계층의 입력 데이터와 컨볼루션 연산의 계산에 고정소수점 수를 사용했으며, 이때 고정소수점 수의 전체 bit 수와 소수점 이하 bit 수에 변화를 주면서 정확도 변화를 관찰하였다. 각 계층의 입력 값과 중간 계산값의 정수 부분의 손실이 발생하지 않으면 고정소수점 연산을 사용해도 부동소수점 연산에 비해 큰 정확도 감소가 없었다. 그리고 오버플로가 발생하는 경우에 고정소수점 수의 최대 또는 최소값으로 근사시켜서 정확도 감소를 줄일 수 있었다. 이 연구결과는 FPGA 기반의 BWN 가속기를 구현할 때에 필요한 메모리와 하드웨어 요구량을 줄이는 데 사용될 수 있다.

생성적 적대 신경망을 이용한 행성의 장거리 2차원 깊이 광역 위치 추정 방법 (Planetary Long-Range Deep 2D Global Localization Using Generative Adversarial Network)

  • 아하메드 엠.나기브;투안 아인 뉴엔;나임 울 이슬람;김재웅;이석한
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.26-30
    • /
    • 2018
  • Planetary global localization is necessary for long-range rover missions in which communication with command center operator is throttled due to the long distance. There has been number of researches that address this problem by exploiting and matching rover surroundings with global digital elevation maps (DEM). Using conventional methods for matching, however, is challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM low resolution, rover image illumination variations and small terrain features. In this work, we use train CNN discriminator to match rover 2D image with DEM rendered images using conditional Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and orientation. We demonstrate our network capability to learn to translate rover image into DEM simulated image and match them using Devon Island dataset. The experimental results show that our proposed approach achieves ~74% mean average precision.

딥러닝을 이용한 인스타그램 이미지 분류 (Instagram image classification with Deep Learning)

  • 정노권;조수선
    • 인터넷정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.61-67
    • /
    • 2017
  • 본 논문에서는 딥러닝의 회선신경망을 이용한 실제 소셜 네트워크 상의 이미지 분류가 얼마나 효과적인지 알아보기 위한 실험을 수행하고, 그 결과와 그를 통해 알게 된 교훈에 대해 소개한다. 이를 위해 ImageNet Large Scale Visual Recognition Challenge(ILSVRC)의 2012년 대회와 2015년 대회에서 각각 우승을 차지한 AlexNet 모델과 ResNet 모델을 이용하였다. 평가를 위한 테스트 셋으로 인스타그램에서 수집한 이미지를 사용하였으며, 12개의 카테고리, 총 240개의 이미지로 구성되어 있다. 또한, Inception V3모델을 이용하여 fine-tuning을 실시하고, 그 결과를 비교하였다. AlexNet과 ResNet, Inception V3, fine-tuned Inception V3 이 네 가지 모델에 대한 Top-1 error rate들은 각각 49.58%, 40.42%, 30.42% 그리고 5.00%로 나타났으며, Top-5 error rate들은 각각 35.42%, 25.00%, 20.83% 그리고 0.00%로 나타났다.

시간 축 주의집중 기반 동물 울음소리 분류 (Temporal attention based animal sound classification)

  • 김정민;이영로;김동현;고한석
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.406-413
    • /
    • 2020
  • 본 논문에서는 조류와 양서류 울음소리의 구별 정확도를 높이기 위해 게이트 선형유닛과 자가주의 집중 모듈을 활용해서 데이터의 중요한 부분을 중심으로 특징 추출 및 데이터 프레임의 중요도를 판별해 구별 정확도를 높인다. 이를 위해 먼저 1차원의 음향 데이터를 로그 멜 스펙트럼으로 변환한다. 로그 멜 스펙트럼에서 배경잡음같이 중요하지 않은 정보는 게이트 선형유닛을 거쳐 제거한다. 그러고 난 뒤 시간 축에 자가주의집중기법을 적용해 구별 정확도를 높인다. 사용한 데이터는 자연환경에서 멸종위기종을 포함한 조류 6종의 울음소리와 양서류 8종의 울음소리로 구성했다. 그 결과, 게이트 선형유닛 알고리즘과 시간 축에서 자가주의집중을 적용한 구조의 평균 정확도는 조류를 구분했을 때 91 %, 양서류를 구분했을 때 93 %의 분류율을 보였다. 또한, 기존 알고리즘보다 약 6 % ~ 7 % 향상된 정확도를 보이는 것을 확인했다.

고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발 (Development of Hybrid Metals Coated Carbon Fibers for High-Efficient Electromagnetic Interference Shielding)

  • 문재정;박옥경;이중희
    • Composites Research
    • /
    • 제33권4호
    • /
    • pp.191-197
    • /
    • 2020
  • 본 연구에서는 향상된 내구성을 가진 고효율 전자파차폐용 랜덤배향 시트 소재를 개발하기 위해 구리(Copper: Cu)와 니켈 (Nickel: Ni)이 코팅된 탄소섬유(Carbon fiber: CF)와 같은 하이브리드 소재를 습식공정을 통해 제조 하였다. 제조된 시트 소재는 69.4~93.0 dB의 높은 전자파 차폐효율을 보여주었다. 또한 하이브리드 금속으로 코팅된 Ni-Cu/CFs 시트는 Ni표면의 유효한 부식저항성과 기계적 저항성 때문에 가혹한 화학적/열적 환경하에서 매우 우수한 내구성을 보여주었다. 이와 관련하여 Ni-Cu/CF 시트는 Cu/CF 시트와 비교하여 1.7배 긴 수명을 가지는 것을 확인하였다.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.