• 제목/요약/키워드: cnn

검색결과 2,165건 처리시간 0.027초

Toward Practical Augmentation of Raman Spectra for Deep Learning Classification of Contamination in HDD

  • Seksan Laitrakun;Somrudee Deepaisarn;Sarun Gulyanon;Chayud Srisumarnk;Nattapol Chiewnawintawat;Angkoon Angkoonsawaengsuk;Pakorn Opaprakasit;Jirawan Jindakaew;Narisara Jaikaew
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.208-215
    • /
    • 2023
  • Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.

Evaluation of Deep Learning Model for Scoliosis Pre-Screening Using Preprocessed Chest X-ray Images

  • Min Gu Jang;Jin Woong Yi;Hyun Ju Lee;Ki Sik Tae
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권4호
    • /
    • pp.293-301
    • /
    • 2023
  • Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.

Optimized Deep Learning Techniques for Disease Detection in Rice Crop using Merged Datasets

  • Muhammad Junaid;Sohail Jabbar;Muhammad Munwar Iqbal;Saqib Majeed;Mubarak Albathan;Qaisar Abbas;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.57-66
    • /
    • 2023
  • Rice is an important food crop for most of the population in the world and it is largely cultivated in Pakistan. It not only fulfills food demand in the country but also contributes to the wealth of Pakistan. But its production can be affected by climate change. The irregularities in the climate can cause several diseases such as brown spots, bacterial blight, tungro and leaf blasts, etc. Detection of these diseases is necessary for suitable treatment. These diseases can be effectively detected using deep learning such as Convolution Neural networks. Due to the small dataset, transfer learning models such as vgg16 model can effectively detect the diseases. In this paper, vgg16, inception and xception models are used. Vgg16, inception and xception models have achieved 99.22%, 88.48% and 93.92% validation accuracies when the epoch value is set to 10. Evaluation of models has also been done using accuracy, recall, precision, and confusion matrix.

푸리에 변환 및 이미지 증강을 통한 분류 성능 최적화에 관한 연구 (A Study on Optimization of Classification Performance through Fourier Transform and Image Augmentation)

  • 김기현;김성목;김용수
    • 품질경영학회지
    • /
    • 제51권1호
    • /
    • pp.119-129
    • /
    • 2023
  • Purpose: This study proposes a classification model for implementing condition-based maintenance (CBM) by monitoring the real-time status of a machine using acceleration sensor data collected from a vehicle. Methods: The classification model's performance was improved by applying Fourier transform to convert the acceleration sensor data from the time domain to the frequency domain. Additionally, the Generative Adversarial Network (GAN) algorithm was used to augment images and further enhance the classification model's performance. Results: Experimental results demonstrate that the GAN algorithm can effectively serve as an image augmentation technique to enhance the performance of the classification model. Consequently, the proposed approach yielded a significant improvement in the classification model's accuracy. Conclusion: While this study focused on the effectiveness of the GAN algorithm as an image augmentation method, further research is necessary to compare its performance with other image augmentation techniques. Additionally, it is essential to consider the potential for performance degradation due to class imbalance and conduct follow-up studies to address this issue.

Development of YOLOv5s and DeepSORT Mixed Neural Network to Improve Fire Detection Performance

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.320-324
    • /
    • 2023
  • As urbanization accelerates and facilities that use energy increase, human life and property damage due to fire is increasing. Therefore, a fire monitoring system capable of quickly detecting a fire is required to reduce economic loss and human damage caused by a fire. In this study, we aim to develop an improved artificial intelligence model that can increase the accuracy of low fire alarms by mixing DeepSORT, which has strengths in object tracking, with the YOLOv5s model. In order to develop a fire detection model that is faster and more accurate than the existing artificial intelligence model, DeepSORT, a technology that complements and extends SORT as one of the most widely used frameworks for object tracking and YOLOv5s model, was selected and a mixed model was used and compared with the YOLOv5s model. As the final research result of this paper, the accuracy of YOLOv5s model was 96.3% and the number of frames per second was 30, and the YOLOv5s_DeepSORT mixed model was 0.9% higher in accuracy than YOLOv5s with an accuracy of 97.2% and number of frames per second: 30.

심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법 (Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning)

  • 정순규;원문철
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

개인정보 보호를 위한 비디오에서의 지능형 얼굴 모자이킹 방법 (Intelligent Face Mosaicing Method in Video for Personal Information Protection)

  • 임혁;최민석;최승비;최해철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.338-339
    • /
    • 2020
  • 개인 방송의 보편화로 인해 인터넷 혹은 방송으로 유포되는 영상에서 일반인의 얼굴이 빈번히 노출되고 있으며, 동의 받지 않은 얼굴의 방송 노출은 개인 초상권 침해와 같은 사회적 문제를 일으킬 수 있다. 이러한 개인 초상권 침해 문제를 해결하고자 본 논문은 비디오에서 일반인의 얼굴을 검출하고 이에 마스킹을 가하는 방법을 제안한다. 제안 방법은 우선 딥러닝 기반의 Faster R-CNN을 이용하여 모자이킹을 하지 않을 특정인과 모자이킹을 가할 비특정인을 포함한 다수의 얼굴 영상을 학습한다. 학습된 네트워크를 이용하여 입력 비디오에 대해 사람의 얼굴을 검출하고 검출된 결과 중 특정인을 선별해 낸다. 최종적으로 입력 비디오에서 특정인을 제외한 나머지 검출된 얼굴에 대해 모자이킹 처리를 수행함으로써 비디오에서 지능적으로 비특정인의 얼굴을 가린다. 실험결과, 특정인과 비특정인을 포함한 얼굴 검출의 경우 99%의 정확도를 보였으며, 얼굴 검출 결과 중 특정인을 정확히 맞춘 경우는 86%의 정확도를 보였다. 제안 방법은 인터넷 동영상 서비스 및 방송 분야에서 개인 정보 보호를 위해 효과적으로 활용될 수 있을 것으로 기대된다.

  • PDF

딥러닝 기반 시각-관성을 활용한 드론 주행기록 추정 (Deep Learning based Visual-Inertial Drone Odomtery Estimation)

  • 송승연;박상원;김한결;최수한
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.842-845
    • /
    • 2020
  • 본 연구는 시각-관성 기반의 딥러닝 학습으로 자유분방하게 움직이는 드론의 주행기록을 정확하게 추정하는 것을 목표로 한다. 드론의 비행주행은 드론의 온보드 센서와 조정값을 이용하는 것이 일반적이다. 본 연구에서는 이 온보드 센서 데이터를 학습에 사용하여 비행주행의 위치추정을 실험하였다. 선행연구로써 DeepVO[1]룰 구현하여 KITTI[3] 데이터와 Midair[4] 데이터를 비교, 분석하였다. 3D 좌표면에서의 위치 추정에 선행연구 모델의 한계가 있음을 확인하고 IMU를 Feature로써 사용하였다. 본 모델은 FlowNet[2]을 모방한 CNN 네트워크로부터 Optical Flow Feature에 IMU 데이터를 더해 RNN으로 학습을 진행하였다. 본 연구를 통해 주행기록 예측을 다소 정확히 했다고 할 수 없지만, IMU Feature를 통해 주행기록의 예측이 가능함을 볼 수 있었다. 본 연구를 통해 시각-관성 분야에서 사람의 지식이나 조정이 들어가는 센서를 융합하는 기존의 방식에서 사람의 제어가 들어가지 않는 End-to-End 방식으로 인공지능을 학습했다. 또한, 시각과 관성 데이터를 통해 주행기록을 추정할 수 있었고 시각적으로 그래프를 그려 정답과 얼마나 차이 있는지 확인해보았다.

다세대주택 주차 문제 해소를 위한 CCTV를 활용한 인공지능(AI) 주차관제 솔루션 (Artificial intelligence (AI) parking control solution using CCTV to solve multi-family housing parking problems)

  • 최규민;김유민;신준표;김중현;곽민혁;김병완;이병권
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.273-275
    • /
    • 2021
  • 본 논문에서는 기존 스마트주차관제 시스템의 한계로 인해 주차 관제의 사각지대에 있는 다세대 주택 주차 문제를 해결하는 솔루션을 제안한다. 기존 스마트 주차관제는 센서 기반의 고비용의 장비 및 시공비가 소요되며, 이러한 특성으로 인해 다세대 주택에 적용이 어렵다. 해당 문제를 해결하기 위해 본 논문은 기존 설비인 CCTV를 활용한 스마트 주차 관제 시스템을 제안하며, 해당 솔루션은 텐서플로 cnn중 알씨엔엔 RPN을 적용하여 차량 객체 인식 및 주차 공간 객체 인식을 구현하였으며, 다세대 주택 주변 CCTV 영상을 OpenCV를 활용하여 능동적이며 저비용의 스마트 주차 관제 방식을 구현하였으며 CCTV의 특성상 외곡되는 이미지를 OpenCV 이미지 변형을 통해 외곡 이미지를 복원하여 인식률을 높였다.

  • PDF

합성곱 신경망(CNN)을 이용한 U-Net 기반의 인공지능 안면 정면화 모델 (Face Frontalization Model with A.I. Based on U-Net using Convolutional Neural Network)

  • 이상민;손원호;진창균;김지현;김지윤;박나은;김가은;권진영;이혜리;김종완;오덕신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.685-688
    • /
    • 2020
  • 안면 인식은 Face ID를 비롯하여 미아 찾기, 범죄자 추적 등의 분야에 도입되고 있다. 안면 인식은 최근 딥러닝을 통해 인식률이 향상되었으나, 측면에서의 인식률은 정면에 비해 특징 추출이 어려우므로 비교적 낮다. 이런 문제는 해당 인물의 정면이 없고 측면만 존재할 경우 안면 인식을 통한 신원확인이 어려워 단점으로 작용될 수 있다. 본 논문에서는 측면 이미지를 바탕으로 정면을 생성함으로써 안면 인식을 적용할 수 있는 상황을 확장하는 인공지능 기반의 안면 정면화 모델을 구현한다. 모델의 안면 특징 추출을 위해 VGG-Face를 사용하며 특징 추출에서 생길 수 있는 정보 손실을 막기 위해 U-Net 구조를 사용한다.