• 제목/요약/키워드: clustering patterns

검색결과 444건 처리시간 0.029초

개선된 수요 클러스터링 기법을 이용한 발전기 보수정지계획 모델링 (Modeling Planned Maintenance Outage of Generators Based on Advanced Demand Clustering Algorithms)

  • 김진호;박종배
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권4호
    • /
    • pp.172-178
    • /
    • 2006
  • In this paper, an advanced demand clustering algorithm which can explore the planned maintenance outage of generators in changed electricity industry is proposed. The major contribution of this paper can be captured in the development of the long-term estimates for the generation availability considering planned maintenance outage. Two conflicting viewpoints, one of which is reliability-focused and the other is economy-focused, are incorporated in the development of estimates of maintenance outage based on the advanced demand clustering algorithm. Based on the advanced clustering algorithm, in each demand cluster, conventional effective outage of generators which conceptually capture maintenance and forced outage of generators, are newly defined in order to properly address the characteristic of the planned maintenance outage in changed electricity markets. First, initial market demand is classified into multiple demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the initial demand. Then, based on the advanced demand clustering algorithm, the planned maintenance outages and corresponding effective outages of generators are reevaluated. Finally, the conventional demand clusters are newly classified in order to reflect the improved effective outages of generation markets. We have found that the revision of the demand clusters can change the number of the initial demand clusters, which cannot be captured in the conventional demand clustering process. Therefore, it can be seen that electricity market situations, which can also be classified into several groups which show similar patterns, can be more accurately clustered. From this the fundamental characteristics of power systems can be more efficiently analyzed, for this advanced classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.

약동학적 파라미터를 이용한 시간경로 마이크로어레이 자료의 군집분석 (Clustering of Time-Course Microarray Data Using Pharmacokinetic Parameter)

  • 이효정;김별아;박미라
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.623-631
    • /
    • 2011
  • 시간경로 마이크로어레이 자료 분석의 주요 목적 중의 하나는 유전자들의 시간에 따른 발현수준의 변화를 고려함으로써 발현패턴에 기초한 유전자들의 그룹을 찾기 위한 것으로, 군집분석을 위한 다양한 알고리즘들이 제안되었다. 본 연구에서 시간경로 마이크로어레이 자료에 대한 군집분석을 위해 두 약물제제 간 생물학적 동등성을 평가하기 위한 약동학 시험에서 사용되는 약동학적 파라미터 값에 기초한 군집분석을 제안하였으며 이를 실제 데이터 및 모의실험 자료에 적용하여 유용성을 검토하였다.

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

풍력 데이터를 이용한 발전 패턴 예측 (Predicting Power Generation Patterns Using the Wind Power Data)

  • 서동혁;김규익;김광득;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권11호
    • /
    • pp.245-253
    • /
    • 2011
  • 화석 연료의 무분별한 사용으로 환경이 심각하게 오염되고, 화석 연료의 고갈에 대한 문제가 대두됨에 따라서 화석 연료에 대한 문제를 해결 할 수 있는 대체 에너지원에 대해 관심이 집중되기 시작하였다. 현재 신재생 에너지 중에서 가장 각광을 받고 있는 에너지는 중에 하나가 풍력에너지이다. 풍력에너지 발전단지와 기존의 전력 발전소는 소비되는 전력에 대한 생산의 균형을 맞춰야하며, 풍력에너지단지에서 균형적인 생산을 하기 위해서는 풍력에너지에 대한 분석 및 예측이 필요하다. 이를 위해서 데이터마이닝 분야의 예측 기법이 활용 될 수 있다. 본 논문에서는 풍력 데이터를 이용하여 발전 패턴을 예측하기 위해 SOM(Self-Organizing Feature Map) Clustering 기법과 의사결정나무(decision tree)를 이용한 연구를 진행하였다. 즉, 1) 풍력 데이터의 누락된 데이터와 이상치 데이터를 처리하기 위하여, 전처리 과정을 수행하였고, 이 과정에서 특징 벡터를 추출하였다. 2) 전처리 단계를 거쳐 정제되고 정규화된 데이터 집합을 MIA(Mean Index Adequacy) 척도와 SOM Clustering 기법에 적용하여 대표 발전 패턴을 찾아내고 각각의 데이터에 해당하는 대표 패턴을 클래스 레이블로 할당하도록 하였다. 3) 의사결정나무 기반의 분류 기법에 데이터 집합을 적용시켜 새로운 풍력에너지에 대한 분석 및 예측 모델을 생성하였다. 실험 결과, 의사결정나무를 통한 풍력에너지 발전 패턴을 예측하기 위한 모델을 구축하였다.

수량화 방법을 이용한 건강행태 유형의 특성에 관한 연구 (Characteristics of health lifestyle patterns by the quantification method)

  • 이순영;김선우
    • Journal of Preventive Medicine and Public Health
    • /
    • 제31권1호
    • /
    • pp.72-81
    • /
    • 1998
  • The purpose of this study was to investigate the relation between health behavior patterns and demographic, socio-economic characteristics, health status, health information in Korea. The quantification method through canonical correlation analysis was conducted to the data from Korea National Health Survey in 1995, which consisted of 5,805 persons. The health lifestyle patterns were quantified as good diet lifestyle, passive lifestyle to the negative direction and drinker lifestyle, smoker lifestyle, hedonic lifestyle and fitness lifestyle to the positive direction. The covariate were related to health lifestyle patterns in the order of sex, age, marital status, occupation, health information, economic status, level of physical labour and health status. Characteristics of male, age below 50, married, blue colored worker, no health information, low in economic status, heavy level of physical labour, and poor in health status were positively related to drinker lifestyle, smoker lifestyle, hedonic lifestyle, fitness lifestyle sequentially.

  • PDF

주류 선택 유형에 따른 주류 소비 행태에 관한 연구 (A Study on the Liquor Market Segmentation by Patterns of Choosing Liquor)

  • 김영아;김동진;변광인
    • 한국조리학회지
    • /
    • 제16권2호
    • /
    • pp.232-242
    • /
    • 2010
  • 현대의 점점 다양해지는 소비자의 욕구와 이러한 소비자의 욕구를 충족시키려는 주류산업의 흐름에 따라 새로운 술들이 속속 개발 및 출시되고 있다. 이에 본 연구의 목적은 주류의 선택 유형에 따른 소비자들의 특징을 알아봄으로써 소비자들의 주류 소비 패턴과 성향을 파악하여, 앞으로의 주류 개발 및 시장세분화 마케팅 전략에 기초적 자료가 되고자 하는 것이다. 군집분석을 통하여 주류 선택 시 고려사항을 합리적 선택형, 맛 지향형, 광고 지향형, 주관적 선택형 등의 4가지 유형의 소비자 군집으로 구분하였고, 대응일치분석을 통해 각 군집의 특징을 밝혔다. 합리적 선택유형은 유행에 민감한 젊은 층과 관련이 있고, 50대 이상의 대졸 학력자로 이루어진 맛 지향형은 일주일에 3~4회 술을 마시고 업무적인 이유로 인한 음주량이 많은 유형, 광고 지향형은 대부분 여성인 전업주부로 광고에 민감한 유형, 30대 대학원 이상의 학력, 전문직과 관련성이 높은 주관적 선택형은 주류의 여러 가지 장점과 단점을 골고루 고려하여 음주하는 유형으로 나타났다.

  • PDF

시계열 데이터로부터의 경향성 기반 순차패턴 탐색 (Trend-based Sequential Pattern Discovery from Time-Series Data)

  • 오용생;이동하;남도원;이전영
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.27-45
    • /
    • 2001
  • 데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.

  • PDF

가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석 (Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities)

  • 류재영;한성민;이학태
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.888-896
    • /
    • 2023
  • 항공기 착륙 시에는 정해진 절차에 따라 접근이 이루어진 다음, 활주로 중심선과 정렬하여 착륙하게 된다. 하지만 공항의 상황, 주변 항공기의 상황, 또는 관제사의 지시 등에 따라 빈번한 레이더 벡터링이 일어나기 때문에, 교통 흐름을 파악하거나, 비행 안전성을 파악하기 위해서는 항공기의 접근 패턴을 인지할 필요가 있다. 또한 최종 접근 시 활주로 중심선과 정렬하는 과정에서 과이탈이 발생하는 경우가 있는 데, 이는 이후 불안정 접근 등과 같이 보다 위험한 상황을 초래할 수 있다. 본 논문에서는 클러스터링 기법을 이용하여 접근 구간에서의 항공기 궤적들의 패턴을 추출하였다. GMM (Gaussian Mixture Model)을 이용하여 김해공항 접근 항공기 궤적에 대한 클러스터링을 진행하였으며, 2019년 1년간 김해공항으로 착륙한 항공기의 데이터를 이용하였다. 클러스터 별 centroid 값을 이용하여, 총 86개의 접근 궤적 패턴을 추출하였다. 그 후 각 클러스터 내 항공기 중 최종 접근시 과이탈하는 항공기를 탐지하여 확률 분포를 계산하였다.

웹 개인화를 위한 웹사용자 클러스터링 알고리즘에 관한 연구 (A Study on Web-User Clustering Algorithm for Web Personalization)

  • 이해각
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2375-2382
    • /
    • 2011
  • 웹사이트 운영이 비즈니스 모델로서의 성공을 거두기 위한 가장 중요한 요소 중 하나는 웹사용자의 성향을 분석하여 이를 효율적으로 이용하는 것이다. 사용자 분석을 통하여 사용자들에게 웹사이트의 가치를 효율적으로 전달하고 이를 통하여 운영자는 충분한 수익을 거둘 수 있다. 이러한 점에서 웹 사이트를 이용하는 사용자들의 취향과 행동방식을 얻어내려는 웹 방문 패턴 발견으로써의 사용자 클러스터링은 매우 중요하다. 또한 얻어진 사용자의 클러스터링 정보는 웹 개인화나 웹 사이트를 재구성하는데 필수적이다. 본 논문에서는 사용자 웹 방문 데이터를 정제하고 분류하여 그 특성에 따라 사용자들을 몇 개의 그룹으로 클러스터링 하기 위한 알고리즘이 제안된다. 알고리즘은 2단계로 구성되는데 첫 번째 단계는 초기해를 구하는 단계로서, 패스의 사이각을 이용하여 유사도를 측정하고 이 유사도에 따라 K개의 사용자 그룹으로 분류하여 초기해를 구한다. 두번째 단계는 첫 번째 단계에서 구한 초기해를 개선하여 최적해를 찾는 과정으로서 하이퍼플레인을 이용하여 클러스터링하는 개량된 K-평균알고리즘을 제안한다. 또한 실험을 통하여 기존의 방법과 비교하여 제안된 알고리즘의 효율성과 패스 특성이 보다 정확하게 계산된 클러스터링이 구현됨을 확인할 수 있다.