• Title/Summary/Keyword: cluster heads

Search Result 136, Processing Time 0.032 seconds

Improving Data Accuracy Using Proactive Correlated Fuzzy System in Wireless Sensor Networks

  • Barakkath Nisha, U;Uma Maheswari, N;Venkatesh, R;Yasir Abdullah, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3515-3538
    • /
    • 2015
  • Data accuracy can be increased by detecting and removing the incorrect data generated in wireless sensor networks. By increasing the data accuracy, network lifetime can be increased parallel. Network lifetime or operational time is the time during which WSN is able to fulfill its tasks by using microcontroller with on-chip memory radio transceivers, albeit distributed sensor nodes send summary of their data to their cluster heads, which reduce energy consumption gradually. In this paper a powerful algorithm using proactive fuzzy system is proposed and it is a mixture of fuzzy logic with comparative correlation techniques that ensure high data accuracy by detecting incorrect data in distributed wireless sensor networks. This proposed system is implemented in two phases there, the first phase creates input space partitioning by using robust fuzzy c means clustering and the second phase detects incorrect data and removes it completely. Experimental result makes transparent of combined correlated fuzzy system (CCFS) which detects faulty readings with greater accuracy (99.21%) than the existing one (98.33%) along with low false alarm rate.

Stackelberg Game between Multi-Leader and Multi-Follower for Detecting Black Hole and Warm Hole Attacks In WSN

  • S.Suganthi;D.Usha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.159-167
    • /
    • 2023
  • Objective: • To detect black hole and warm hole attacks in wireless sensor networks. • To give a solution for energy depletion and security breach in wireless sensor networks. • To address the security problem using strategic decision support system. Methods: The proposed stackelberg game is used to make the spirited relations between multi leaders and multi followers. In this game, all cluster heads are acts as leaders, whereas agent nodes are acts as followers. The game is initially modeled as Quadratic Programming and also use backtracking search optimization algorithm for getting threshold value to determine the optimal strategies of both defender and attacker. Findings: To find optimal payoffs of multi leaders and multi followers are based on their utility functions. The attacks are easily detected based on some defined rules and optimum results of the game. Finally, the simulations are executed in matlab and the impacts of detection of black hole and warm hole attacks are also presented in this paper. Novelty: The novelty of this study is to considering the stackelberg game with backtracking search optimization algorithm (BSOA). BSOA is based on iterative process which tries to minimize the objective function. Thus we obtain the better optimization results than the earlier approaches.

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

TLF: Two-level Filter for Querying Extreme Values in Sensor Networks

  • Meng, Min;Yang, Jie;Niu, Yu;Lee, Young-Koo;Jeong, Byeong-Soo;Lee, Sung-Young
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.870-872
    • /
    • 2007
  • Sensor networks have been widely applied for data collection. Due to the energy limitation of the sensor nodes and the most energy consuming data transmission, we should allocate as much work as possible to the sensors, such as data compression and aggregation, to reduce data transmission and save energy. Querying extreme values is a general query type in wireless sensor networks. In this paper, we propose a novel querying method called Two-Level Filter (TLF) for querying extreme values in wireless sensor networks. We first divide the whole sensor network into domains using the Distributed Data Aggregation Model (DDAM). The sensor nodes report their data to the cluster heads using push method. The advantages of two-level filter lie in two aspects. When querying extreme values, the number of pull operations has the lower boundary. And the query results are less affected by the topology changes of the wireless sensor network. Through this method, the sensors preprocess the data to share the burden of the base station and it combines push and pull to be more energy efficient.

EVALUATION ON THE ABRASION RESISTANCE OF A SURFACE SEALANT (레진전색제의 마모저항성에 대한 평가)

  • Kim, Soo-Mee;Han, Sae-Hee;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.180-190
    • /
    • 2007
  • The purpose of this study was to evaluate the abrasion resistance of surface penetrating sealant which was applied on a composite resin restoration and to provide proper time to reapply sealant on composite resin surface. Two hundred rectangular specimens, sized $8\times3\times2mm$, were made of Micronew (Bisco, Inc., Schaumburg, IL, U.S.A) and divided into two groups; F group (n = 10) was finished with coarse and medium grit of Sof-Lex discs and BisCoverwas applied B group (n = 190) after finishing with discs. B group was again subdivided into nineteen subgroups From B-1 group to B-18 group were subjected to toothbrush abrasion test using a distilled water-dentifrice slurry and toothbrush heads B-IM group was not subjected to toothbrush abrasion test. Average surface roughness (Ra) of each group was calculated using a surface roughness tester (Surfcorder MSE-1700: Kosaka Laboratory Ltd., Tokyo, Japan) . A representative specimen of each group was examined by FE-SEM (S-4700: Hitachi High Technologies Co., Tokyo, Japan). The data were analysed using cluster analysis, paired t-test, and repeated measure ANOVA. The results of this study were as follows; 1. Ra off group was $0.898{\pm}0.145{\mu}m$ and B-IM group was $0.289{\pm}0.142{\mu}m$. Ra became higher from B-1 group $(0.299{\pm}0.48{\mu}m$ to B-18 group $(0.642{\pm}0.313{\mu}m$. 2. Final cluster center of Ra was $0.361{\mu}m$ in cluster 1 $(B-IM\simB-7)$, $0.511{\mu}m$ in cluster 2 $(B-8\simB-14)$ and $0.624{\mu}m$ in cluster 3 ($(B-15\simB-18)$. There were significant difference among Ra of three clusters. 3 Ra of B-IM group was decreased 210.72% than Ra of F group. Ra of B-8 group and B-15 group was increased 35.49% and 51.35% respectively than Ra of B-IM group. 4. On FE-SEM, B-IM group showed the smoothest resin surface. B-8 group and B-15 group showed vertically shallow scratches , and wide and irregular vertical scratches on composite resin surface respectively. Within a limitation of this study, finished resin surface will be again smooth and glazy if BisCover would be reapplied within 8 to 14 months after applying to resin surface.

An Energy Efficient Clustering Scheme for WSNs (WSN에서 에너지 효율적인 클러스터링 기법)

  • Chung, Kil-Soo;Lee, Won-Seok;Song, ChangYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.252-258
    • /
    • 2013
  • As WSN is energy constraint so energy efficiency of nodes is important. Because avoiding long distance communication, clustering operating in rounds is an efficient algorithm for prolonging the lifetime of WSN and its performance depends on duration of a round. A short round time leads to frequent re-clustering while a long round time increases energy consume of cluster heads more. So existing clustering schemes determine proper round time, based on the parameters of initial WSN. But it is not appropriate to apply the round time according to initial value throughout the whole network time because WSN is very dynamic networks nodes can be added or vanished. In this paper we propose a new algorithm which calculates the round time relying on the alive node number to adapt the dynamic WSN. Simulation results validate the proposed algorithm has better performance in terms of energy consumption of nodes and loss rate of data.

Energy-Aware Self-Stabilizing Distributed Clustering Protocol for Ad Hoc Networks: the case of WSNs

  • Ba, Mandicou;Flauzac, Olivier;Haggar, Bachar Salim;Makhloufi, Rafik;Nolot, Florent;Niang, Ibrahima
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2577-2596
    • /
    • 2013
  • In this paper, we present an Energy-Aware Self-Stabilizing Distributed Clustering protocol based on message-passing model for Ad Hoc networks. The latter does not require any initialization. Starting from an arbitrary configuration, the network converges to a stable state in a finite time. Our contribution is twofold. We firstly give the formal proof that the stabilization is reached after at most n+2 transitions and requires at most $n{\times}log(2n+{\kappa}+3)$ memory space, where n is the number of network nodes and ${\kappa}$ represents the maximum hops number in the clusters. Furthermore, using the OMNeT++ simulator, we perform an evaluation of our approach. Secondly, we propose an adaptation of our solution in the context of Wireless Sensor Networks (WSNs) with energy constraint. We notably show that our protocol can be easily used for constructing clusters according to multiple criteria in the election of cluster-heads, such as nodes' identity, residual energy or degree. We give a comparison under the different election metrics by evaluating their communication cost and energy consumption. Simulation results show that in terms of number of exchanged messages and energy consumption, it is better to use the Highest-ID metric for electing CHs.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

Energy Efficient Two-Tier Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 two-tier 라우팅 프로토콜)

  • Ahn Eun-Chul;Lee Sung-Hyup;Cho You-Ze
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.103-112
    • /
    • 2006
  • Since sensor node has a limited energy supply in a wireless sensor network, it is very important to maximize the network lifetime through energy-efficient routing. Thus, many routing protocols have been developed for wireless sensor networks and can be classified into flat and hierarchical routing protocols. Recent researches focus on hierarchical routing scheme and LEACH is a representative hierarchical routing protocol. In this paper, we investigated the problems of the LEACH and proposed a novel energy efficient routing scheme, called ENTER(ENergy efficient Two-tiEr Routing protocol), to resolve the problem. ENTER reduces an energy consumption and increases a network lifetime by organizing clusters by the same distributed algerian as in the LEACH and establishing paths among cluster-heads to transmit the aggregated data to the sink node. We compared the performance of the ENTER with the LEACH through simulation and showed that the ENTER could enhance the network lifetime by utilizing the resources more efficiently.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.