• Title/Summary/Keyword: clover oil

Search Result 8, Processing Time 0.021 seconds

Combined application of oil cake and rice bran reduced the number of weeds and increased the yield of paddy rice in a paddy field incorporated with white clover

  • Sugimoto, Hideki;Araki, Takuya;Morokuma, Masahiro;Hossain, Shaikh Tanveer
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.357-357
    • /
    • 2017
  • The combined application of oil cake and rice bran into the soil surface was found useful for weed control in our previous pot study. The present study was undertaken to evaluate the performance of white clover (Trifolium repens L.) while incorporated in the paddy field and effects of combined fertilizer on weed control and rice yield. A plot was divided into two parts i.e. white clover incorporated and not incorporated. The nitrogen content of the incorporated white clover was $12.5gm^{-2}$. Chemical fertilizer and combined fertilizer plots were compared with non-fertilizer conditions. The mixed ratio of combined fertilizer was oil cake 1.35 and rice bran 1.0. Combined fertilizer was applied to the soil surface, and chemical fertilizer was mixed in the soil. Nitrogen application rate was $8gm^{-2}$ for any fertilizer. The weed numbers were significantly reduced in the white clover plot irrespective of application condition both at heading and harvest time. Also, weed control ability was improved by the use of combined fertilizer. In the not incorporated plot, the number of weeds was suppressed about 90% by applying combined fertilizer. The rice yield was markedly increased by the incorporation with white clover under all fertilization conditions. Contribution rates of increased rice yield by white clover and combined fertilizer were about 55% and about 25%, respectively. The rice yield was increased by the incorporation with white clover, and the number of weeds remarkably decreased as well. Also, these effects were improved due to combined application of oil cake and rice bran.

  • PDF

Antibacterial Activity of Clove Oil against Foodborne Pathogenic Bacteria and Sensory Attributes in Clove Oil-Enriched Dairy Products: A Preliminary Study

  • Chon, Jung-Whan;Seo, Kun-Ho;Bae, Dongryeoul;Kim, Binn;Jeong, Dongkwang;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.197-206
    • /
    • 2020
  • This study was conducted to evaluate the antibacterial activity against Cronobacter sakazakii and Salmonella enteritidis as well as the sensory attributes of milk products supplemented with various concentrations (control, 0.5%, 1.0%, 1.5%, and 2.0%) of clove oil. In this study, clove oil was shown to have strong antibacterial activities. In addition, all the samples were assessed by ten researchers trained in five sensory attributes, namely, taste, flavor, color, texture, and overall acceptability. Compared to the control, 5% clove oil supplemented was the best in market milk, while in yogurt and kefir, 1.0% supplementation was the best. In terms of sensory attributes, the low score of color and flavor of market milk, yogurt, and kefir is attributed to the characteristics of the supplemented clove oil. Consequently, this study presents the possibility of producing bio-functional milk products supplemented with clove oil, and for controlling the growth of foodborne pathogenic bacteria in milk products using clove oil.

Allelopathic Effect of Ganghwa mugwort (Artemisia spp.) on Seed Germination and Seedling Growth of Plants (강화약쑥 추출물이 종자발아 및 유식물 생장에 미치는 알레로파시 효과)

  • Lee, Joo-Hwa;Byeon, Ji-Hui;Lee, Jeong-Hoon;Park, Chun-Geon;Park, Chung-Berm;Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.589-605
    • /
    • 2012
  • This study was conducted to identify allelopathic effect of Ganghwa domestic Artemisia spp., named Sajabalssuk and Ssajuarissuk, for various receptor plants including clover (Trifolium repens L.), alfalfa (Medicago sativa L.), lawn grass (Zoysia japonica Steud.), dandelion (Taraxacum platycarpum Dahlst.), and dahurianpatrinia (Patrinia scabiosaefolia Fisch. ex Trevir). Receptor plants were treated with the aqueous and essential oil extract of Artemisia plants. In consequence, their allelopathic effects were evaluated by measuring seed germination rates, seedling growth, and dry weights of the receptor plants. The seed germination and seedling growth of the receptor plants were inhibited by all treatments of both aqueous and essential oil extracts of the Artemisia plants, and, in addition, the inhibitory effects were increased according to the higher concentration. Among the donor plants, A. $sp.^*III$ showed most effective allelopathic effect. Comparing the alleopathic effect among the receptor plants, seed germination was most inhibited in lawn grass while inhibitory effect of seedling growth was comparatively higher in dandelion. Although inhibitory effects were comparatively lower, the allelopathic effects of Artemisia plants were identified in clover and alfalfa since the seedling growth of these plants were inhibited more than 70%. Thus, in result, Ganghwa domestic Artemisia spp. could be possibly used for weed control since natural products of the plants showed inhibitory effects on seed germination and seedling growth of various receptor plants.

Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera) (아미리스 정유의 제초활성)

  • Yun, Mi Sun;Yeon, Bo-Ram;Cho, Hae Me;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.44-49
    • /
    • 2012
  • The objective of this study was to know the herbicidal activity of the essential oil from amyris (Amyris balsamifera). In a seed bioassay experiment, the amyris essential oil inhibited the growth of rapeseed (Brassica napus) by fifty percent at 8.8 ${\mu}g\;g^{-1}$. And in a greenhouse experiment, sorghum, barnyard grass and Indian jointvetch, which was applied in above-ground parts, with the amyris essential oil at 4,000 ${\mu}g\;ml^{-1}$ showed visual injuries of 90, 70, and 70, respectively (0, no damage; 100, total damage). However, soil application of the essential oil did not show such herbicidal injuries. In a field experiment, foliar application of the amyris essential oil at 5% controlled effectively weeds such as barnyardgrass, shepherd's purse, and clover in 24 hours. Our results indicated that the amyris essential oil had herbicidal activity. To understand the composition of the amyris essential oil, the oil was analyzed by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus. There were 15 organic chemicals in the oil and the major constituents were calarene, elemol, ${\gamma}$-eudesmol, curcumene, ${\beta}$-sesquiphellandrene, zingiberene, selina-3,7(11)-diene, 1,3-diisopropenyl-6-methyl-cyclohexene, ${\beta}$-bisabolene, and ${\beta}$-maaliene. Overall results suggest that the amyris essential oil had a herbicidal activity with fast, contact, and non-selective mechanism.

Control Efficacy of Brassicaceae Cover Crops against Clover Cyst Nematode, Heterodera trifolii (배추과 녹비작물의 클로버씨스트선충 방제 효과)

  • Ko, Hyoung-Rai;Kim, Se-Jong;Lee, Jae-Kook
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.116-119
    • /
    • 2020
  • To investigate the effects of Brassicaceae cover crops on clover cyst nematode, Heterodera trifolii, 10 cultivars consisting of six of oil radish and four of white mustard were planted in the nematode infected field at Jeongseon city. Two months after planting, the cover crops were plow down and incorporated into the soil using rotavator, decomposed for 1 month, then transplanted kimchi-cabbages. After 70 days, the density of eggs inside of the cyst and the number of females in the soil were examined. As a result, the reproduction rates of eggs in each plots of Adios and Anaconda cultivars, which were 0.04 and 0.02, respectively, were greatly reduced. The number of females in the plots of above two cultivars showed means at 2.5 and 3.5 per 300 ㎤ soil, which were lower than those of other plots. In addition, fresh weights of three plants in the two plots, which were 7.67 and 7.35 kg, were significantly higher than that of the control plot. Collectively, these results suggest that the two cultivars of Brassicaceae cover crops, Adios and Anaconda, could be used for reducing the cyst nematode density.

Long-Term Study of Weather Effects on Soybean Seed Composition

  • Bennett John O.;Krishnan Hari B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • A long-term study initiated in 1989 at San-born Field, Columbia, Missouri, was designed to evaluate the affect of environmental factors, nitrogen application, and crop rotation on soybean (Glycine max [L.] Merr.) seed composition. Soybeans were grown as part of a four- year rotation which included corn (Zea maize L.), wheat (Triticum aestivum L.), and red clover (Trifolium pratense L.). Results from soil tests made prior to initiation of the study and subsequently every five years, were used to calculate application rates of nitrogen, phosphorus, and potassium necessary for target yield of pursuant crops. In the experimental design, nitrogen was applied to one-half of the plot on which the non-leguminous crop, either corn or wheat was grown. Analysis of soybean seed by near infrared reflectance spectroscopy collected over an 11-year period revealed a linear increase in protein and decrease in oil content. Application of nitrogen fertilizer to non-leguminous crops did not have an apparent effect on total protein or oil content of subsequent soybean crop. Analysis of soybean seed proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with computer­assisted densitometry revealed subtle changes in the accumulation of seed proteins. Immunoblot analysis using antibodies raised against the $\beta-subunit$ of $\beta-conglycinin$ showed a gradual increase in the accumulation of the 7S components during successive years of the experiment. A linear increase in temperature and decrease in rainfall was observed from the onset of data· collection. Higher temperatures during the growing season have been linked to increased protein and diminished oil content of soybean, thus changes observed in this study are possibly related to climatic conditions. However, crop rotation and subsequent changes in soil ecology may contribute to these observed changes in the seed composition.

Effect of Water Activity and Temperature on Growth, Germination, Sporulation, and Utilization of Carbon Source of Penicillium oxalicum (PENOX) as a Biocontrol Agent(BCA) for control of Clover(Trifolium repens L.) (토끼풀(Trifolium repens L.) 방제용 생물제제 Penicillium oxalicum (PENOX)의 발아, 생장, 포자생성 및 탄소원이용에 미치는 수분활성 및 온도의 영향)

  • Lee, Hyang-Burm;Kim, Chang-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.68-74
    • /
    • 2000
  • Penicillium oxalicum (PENOX) has shown the potential as a biocontrol agent(5CA) for control of a weed, clover(Trifolium repens L.) in grass plots. The bioherbicidal activity may be due to germinative and growth capacities and substrate availability of the agent over a range of environmental factors. The influences of different water activities($0.94{\sim}0.995\;a_w$) and temperatures($18{\sim}30^{\circ}C$) on mycelial growth, conidial germination, sporulation oil 2% MEA(malt extract agar) adjusted to different water activities with glycerol, and carbon source utilization using BIOLOG GN MicroPlate were determined in vitro. Decreases in $a_w$ on MEA caused a reduction in mycelial growth and conidial germination depending on temperature. The mycelial growth of PENOX was greatest at $30^{\circ}C/0.995\;a_w$. At some lowered water activity($0.97\;a_w$), the growth was similar between 25 and $30^{\circ}C$, and considerably decreased at lowered temperature($20^{\circ}C$). The germination rate was also greatest at $30^{\circ}C/0.995\;a_w$. Lag phase times for PENOX at $18^{\circ}C$ on MEA were >6hrs at tile whole $a_w$ level tested, and at 18 and $25^{\circ}C$ they were >18hrs and >12hrs at $0.94\;a_w$, respectively. However, its sporulation was some better at $0.97\;a_w$ than $0.995\;a_w$ or $0.94\;a_w$, and better at $20^{\circ}C$ than $30^{\circ}C$. In contrast, the number of carbon sources(niche size) utilized by PENOX varied with $a_w$ and temperature. Under some water stress condition($0.95\;a_w$), the agent utilized smaller number of carbon sources than $0.995\;a_w$ depending on temperature. The niche size at 0.995 and $0.95\;a_w$ were highest at $25^{\circ}C$, and showed 86 and 65, respectively. At $30^{\circ}C$, the niche size at 0.995 and $0.95\;a_w$ showed 84 and 50, respectively. There was no carbon source utilized by PENOX at $0.90\;a_w$ regardless of temperature. These information of tile fungal ecophysiology will be useful for the effective development of BCA.

  • PDF

Dietary Transformation of Lipid in the Rumen Microbial Ecosystem

  • Kim, Eun Joong;Huws, Sharon A.;Lee, Michael R.F.;Scollan, Nigel D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1341-1350
    • /
    • 2009
  • Dietary lipids are rapidly hydrolysed and biohydrogenated in the rumen resulting in meat and milk characterised by a high content of saturated fatty acids and low polyunsaturated fatty acids (PUFA), which contributes to increases in the risk of diseases including cardiovascular disease and cancer. There has been considerable interest in altering the fatty acid composition of ruminant products with the overall aim of improving the long-term health of consumers. Metabolism of dietary lipids in the rumen (lipolysis and biohydrogenation) is a major critical control point in determining the fatty acid composition of ruminant lipids. Our understanding of the pathways involved and metabolically important intermediates has advanced considerably in recent years. Advances in molecular microbial technology based on 16S rRNA genes have helped to further advance our knowledge of the key organisms responsible for ruminal lipid transformation. Attention has focused on ruminal biohydrogenation of lipids in forages, plant oils and oilseeds, fish oil, marine algae and fat supplements as important dietary strategies which impact on fatty acid composition of ruminant lipids. Forages, such as grass and legumes, are rich in omega-3 PUFA and are a useful natural strategy in improving nutritional value of ruminant products. Specifically this review targets two key areas in relation to forages: i) what is the fate of the lipid-rich plant chloroplast in the rumen and ii) the role of the enzyme polyphenol oxidase in red clover as a natural plant-based protection mechanism of dietary lipids in the rumen. The review also addresses major pathways and micro-organisms involved in lipolysis and biohydrogenation.