• Title/Summary/Keyword: cloud optical depth

Search Result 41, Processing Time 0.024 seconds

Comparison of Aerosol Optical Properties from Different Models of Skyradiometer (스카이라디오미터 모델에 따른 에어러솔의 광학적 특성 비교)

  • Choi, Yongjoo;Ghim, Young Sung;Sohn, Byung-Ju
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.311-317
    • /
    • 2011
  • Aerosol optical properties from the radiation measurements by SKYNET PREDE skyradiometers, POM-01 and POM-02 were compared during the inter-calibration campaign at Seoul in February 2009. The monochromatic solar flux at the top of the atmosphere ($F_0$) gave a relative standard deviation (RSD) of 9-10% for both instruments. This comparatively high value of RSD was probably because $F_0$ was determined at short time intervals, in the morning and afternoon, using the measurements made in the polluted environment of Seoul. Although POM-02 was more effective in tracking the solar radiation, aerosol optical depths (AODs) from the two instruments were very similar after the cloud screening procedure. The squared correlation coefficients ($R^2$) of single scattering albedo (SSA) and real and imaginary refractive indices between the two instruments was around 0.5 but increased to 0.7-0.8 when only using AOD greater than 0.4. Nevertheless, mean values of the Angstrom exponent, SSA, and the imaginary refractive index of POM-02 were higher than those of POM-01.

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.

Development of Objective Algorithm for Cloudiness using All-Sky Digital Camera (전천 카메라 영상을 이용한 자동 운량 분석)

  • Kim, Yun Mi;Kim, Jhoon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The cloud amount, one of the basic parameter in atmospheric observation, have been observed by naked eyes of observers, which is affected by the subjective view. In order to ensure reliable and objective observation, a new algorithm to retrieve cloud amount was constructed using true color images composed of red, green and blue (RGB). The true color image is obtained by the Skyview, an all-sky imager taking pictures of sky, at the Science Building of Yonsei University, Seoul for a year in 2006. The principle of distinguishing clear sky from cloudy sky lies in the fact that the spectral characteristics of light scattering is different for air molecules and cloud. The result of Skyview's algorithm showed about 77% agreement between the observed cloud amount and the calculated, for the error range, the difference between calculated and observed cloudiness, within ${\pm}2$. Seasonally, the best accuracy of about 83% was obtained within ${\pm}2$ range in summer when the cloud amounts are higher, thus better signal-to-noise ratio. Furthermore, as the sky turbidity increased, the error also increased because of increased scattering which can explain the large error in spring. The algorithm still need to be improved in classifying sky condition more systematically with other complimentary instruments to discriminate thin cloud from haze to reduce errors in detecting clouds.

Analysis of AOD Characteristics Retrieved from Himawari-8 Using Sun Photometer in South Korea (태양광도계 자료를 이용한 한반도 내 Himawari-8 관측 AOD 특성 분석)

  • Lee, Gi-Taek;Ryu, Seon-Woo;Lee, Tae-Young;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.425-439
    • /
    • 2020
  • Through the operations of advanced geostationary meteorological satellite such as Himawari-8 and GK2A, higher resolution and frequency of AOD (Aerosol Optical Depth) data have become available. In this study, we analyzed the characteristics of Himawari-8/AHI (Advanced Himawari Imager) aerosol properties using the recent 4 years (2016~2019) of Sun photometer data observed at the five stations(Seoul National University, Yonsei University, Hankuk University of Foreign Studies, Gwangju Institute of Science and Technology, Anmyon island) which is a part of the AERONET (Aerosol Robotic Network). In addition, we analyzed the causes for the AOD differences between Himawari AOD and Sun photometer AOD. The results showed that the two AOD data are very similar regardless of geographic location, in particular, for the clear condition (cloud amount < 3). However, the quality of Himawari AOD data is heavily degraded compared to that of the clear condition, in terms of bias (0.05 : 0.21), correlation (0.74 : 0.64) and RMSE (Root Mean Square Error; 0.21 : 0.51), when cloud amount is increased. In general, the large differences between two AOD data are mainly related to the cloud amount and relative humidity. The Himawari strongly overestimates the AOD at all five stations when cloud amount and relative humidity are large. However, the wind speed, precipitable water, height of cloud base and Angstrom Exponent have been shown to have no effect on the AOD differences irrespective of geographic location and cloud amount. The results suggest that caution is required when using Himawari AOD data in cloudy conditions.

THE SCATTERING OF RADIATION IN PLANE-PARALLEL DUST LAYERS (평행평면의 성간먼지층에 의한 복사광의 산란)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.31-35
    • /
    • 2008
  • We present analytical approximations for calculating the scattering and escape of non-ionizing photons from a plane-parallel medium with uniformly illuminated by external sources. We compare the results with the case of a spherical dust cloud. It is found that more scattering and absorption occur in the plane-parallel geometry than in the spherical geometry when the optical depth perpendicular to the plane and the radial optical depth of the sphere are the same. The results can provide an approximate way to estimate radiative transfer in a variety interstellar conditions and can be applied to the dust-scattered diffuse Galactic light.

Inter-comparison of NO2 column densities measured by Pandora and OMI over Seoul, Korea

  • Yun, Seoyeon;Lee, Hanlim;Kim, Jhoon;Jeong, Ukkyo;Park, Sang Seo;Herman, Jay
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.663-670
    • /
    • 2013
  • Total Vertical Column Density (VCD) of $NO_2$, a key component in air quality and tropospheric chemistry was measured using a ground-based instrument, Pandora, in Seoul from March 2012 to October 2013. The $NO_2$ measurements using Pandora were compared with those obtained by satellite remote sensing from Ozone Monitoring Instrument (OMI) where the intercomparison characteristics were analyzed as a function of measurement geometry, cloud amount and aerosol loading. The negative biases of the OMI $NO_2$ VCD were larger when cloud amount and Aerosol Optical Depth (AOD) were higher. The correlation coefficient between $NO_2$ VCDs from Pandora and OMI was 0.53 for the entire measurement period, whereas the correlation coefficient between the two was 0.74 when the cloud amount and AOD were low (cloud amount<3, AOD<0.4). The low bias of OMI data was associated with the shielding effect of the cloud and the aerosols.

Investigating Statistical Characteristics of Aerosol-Cloud Interactions over East Asia retrieved from MODIS Satellite Data (MODIS 위성 자료를 이용한 동아시아 에어로졸-구름의 통계적 특성)

  • Jung, Woonseon;Sung, Hyun Min;Lee, Dong-In;Cha, Joo Wan;Chang, Ki-Ho;Lee, Chulkyu
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1065-1078
    • /
    • 2020
  • The statistical characteristics of aerosol-cloud interactions over East Asia were investigated using Moderate Resolution Imaging Spectroradiometer satellite data. The long-term relationship between various aerosol and cloud parameters was estimated using correlation analysis, principle component analysis, and Aerosol Indirect Effect (AIE) estimation. In correlation analysis, Aerosol Optical Depth (AOD) was positively Correlated with Cloud Condensation Nuclei (CCN) and Cloud Fraction (CF), but negatively correlated with Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). Fine Mode Fraction (FMF) and CCN were positively correlated over the ocean because of sea spray. In principle component analysis, AOD and FMF were influenced by water vapor. In particular, AOD was positively influenced by CF, and negatively by CTT and CTP over the ocean. In AIE estimation, the AIE value in each cloud layer and type was mostly negative (Twomey effect) but sometimes positive (anti-Twomey effect). This is related to regional, environmental, seasonal, and meteorological effects. Rigorous and extensive studies on aerosol-cloud interactions over East Asia should be conducted via micro- and macro-scale investigations, to determine chemical characteristics using various meteorological instruments.

An Analysis of Aerosol Optical Properties around Korea using AERONET (지상원격관측(AERONET)을 통한 한반도 주변 에어로솔 광학특성 분석)

  • Kim, Byung-Gon;Kim, You-Joon;Eun, Seung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.629-640
    • /
    • 2008
  • This study investigates long-term trends and characteristics of aerosol optical depth ($\tau_a$) and Angstrom exponent (${\AA}$) around Korea in order to understand aerosol effects on the regional climate change. The analysis period is mainly from 1999 to 2006, and the analysis sites are Anmyun and Gosan, the background monitoring sites in Korea, and two other sites of Xianghe in China and Shirahama in Japan. The annual variations of $\tau_a$ at Anmyun and Gosan have slightly systematic increasing and decreasing trends, respectively. $\tau_a$ at Anmyun shows more substantial variation, probably because of it's being closer and vulnerable to anthropogenic influence from China and/or domestic sources than Gosan. Both values at Gosan and Anmyun are approximately 1.5 times greater than those at Shirahama. The monthly variation of $\tau_a$ exhibits the highest values at late Spring and the lowest at late-Summer, which are thought to be associated with the accumulation of fine aerosol formed through the photochemical reaction before the Jangma period and the scavenging effect after the Jangma period, respectively. Meanwhile, the episode-average $\tau_a$ for the Yellow dust period increases 2 times greater than that for the non-Yellow dust period. A significant decrease in ${\AA}$ for the Yellow dust period is attributable to an increase in the loading of especially the coarse particles. Also we found no weekly periodicity of $\tau_a$'s, but distinct weekly cycle of $PM_{10}$ concentrations, such as an increase on weekdays and a decrease on weekends at Anmyun and Gosan. We expect these findings would help to initiate a study on aerosol-cloud interactions through the combination of surface aerosol and satellite remote sensing (MODIS, Calipso and CloudSat) in East Asia.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Development of Aerosol Retrieval Algorithm Over Ocean Using FY-1C/1D Data

  • Xiuqing, Hu;Naimeng, Lu;Hong, Qiu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1255-1257
    • /
    • 2003
  • This study proposes a single-channel satellite remote sensing algorithm for retrieving aerosol optical thickness over global ocean using FY-1C/1D data. An efficient lookup table (LUT)method is adopted in this algorithm to generate apparent reflectance in channel 1 and channel 2 of FY-1C/1D over ocean. The algorithm scale the apparent reflectance in cloud-free conditions to aerosol optical thickness using a state-of-art radiative transfer model 6S with input of the relative spectral response of channel 1 and 2 of FY-1C/1D. Monthly mean composite maps of the aerosol optical thickness have been obtained from FY-1C/1D global area coverage data between 2001 and 2003. Aerosol optical thickness maps can show the major aerosol source which are located off the west coast of northern and southern Africa, Arabian Sea and India Ocean. These result is very similar to other satellite sensors such as AVHRR and MODIS in the location area of heavy aerosol optical thickness over global ocean. The algorithm have been used to FY-1D operational performance and it is the first operational aerosol remote sensing product in China.

  • PDF