• Title/Summary/Keyword: cloud migration

Search Result 69, Processing Time 0.045 seconds

Energy-aware Multi-dimensional Resource Allocation Algorithm in Cloud Data Center

  • Nie, Jiawei;Luo, Juan;Yin, Luxiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4320-4333
    • /
    • 2017
  • Energy-efficient virtual resource allocation algorithm has become a hot research topic in cloud computing. However, most of the existing allocation schemes cannot ensure each type of resource be fully utilized. To solve the problem, this paper proposes a virtual machine (VM) allocation algorithm on the basis of multi-dimensional resource, considering the diversity of user's requests. First, we analyze the usage of each dimension resource of physical machines (PMs) and build a D-dimensional resource state model. Second, we introduce an energy-resource state metric (PAR) and then propose an energy-aware multi-dimensional resource allocation algorithm called MRBEA to allocate resources according to the resource state and energy consumption of PMs. Third, we validate the effectiveness of the proposed algorithm by real-world datasets. Experimental results show that MRBEA has a better performance in terms of energy consumption, SLA violations and the number of VM migrations.

Heuristic based Energy-aware Resource Allocation by Dynamic Consolidation of Virtual Machines in Cloud Data Center

  • Sabbir Hasan, Md.;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1825-1842
    • /
    • 2013
  • Rapid growth of the IT industry has led to significant energy consumption in the last decade. Data centers swallow an enormous amount of electrical energy and have high operating costs and carbon dioxide excretions. In response to this, the dynamic consolidation of virtual machines (VMs) allows for efficient resource management and reduces power consumption through the live migration of VMs in the hosts. Moreover, each client typically has a service level agreement (SLA), this leads to stipulations in dealing with energy-performance trade-offs, as aggressive consolidation may lead to performance degradation beyond the negotiation. In this paper we propose a heuristic based resource allocation of VM selection and a VM allocation approach that aims to minimize the total energy consumption and operating costs while meeting the client-level SLA. Our experiment results demonstrate significant enhancements in cloud providers' profit and energy savings while improving the SLA at a certain level.

A Study on the Validity of Government Cloud SaaS Service Migration using TCO Approach (TCO 접근방법을 통한 정부클라우드 SaaS 서비스 전환의 타당성에 관한 연구)

  • Yoon, Seong-Jeong;Kim, In-Hwan;Seo, Jung Wook;Kim, Min-Yong
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.215-231
    • /
    • 2012
  • It is well known that SaaS(Software as a Service) changeover gives several advantages to organization. One of the advantages is the cost reduction effect of IT resources as well as IT human resources. Another one is the curtailment of software development workload in the field of informatization promotions. Nonetheless, it is hard to find comparison cases regarding the quantitative measurement of the introduction of SaaS before and after. Accordingly, when the Government IDC tries to adopt SaaS, it absolutely needs the empirical study whether SaaS is cost-effectiveness or not. In this study, we focus on variation in the Government administration common tasks, processes and labor costs. Using the Man-Month(MM) estimation methods, We verify that how much TCO(Total Cost of Ownership) is reduced per year.

SLA-Aware Resource Management for Cloud based Multimedia Service

  • Hasan, Md. Sabbir;Islam, Md. Motaharul;Park, Jun Young;Huh, Eui-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.171-174
    • /
    • 2013
  • Virtualization technology opened a new era in the field of Data intensive, Grid and Cloud Computing. Today's Data centers are smarter than ever leveraging the Virtualization technology. In response to that, Dynamic consolidations of Virtual Machines (VMs) allow efficient resource management by live migration of VMs in the hosts. Moreover, each client typically has a service level agreement (SLA), leads to stipulation in dealing with energy-performance trade-off as aggressive consolidation may lead to performance degradation beyond the negotiation. In this paper we propose a Cloud Based CDN approach for allocation of VM that aims to maximize the client-level SLA. Our experiment result demonstrates significant enhancement of SLA at certain level.

Performance Analysis of Docker Container Migration Using Secure Copy in Mobile Edge Computing (모바일 엣지 컴퓨팅 환경에서 안전 복사를 활용한 도커 컨테이너 마이그레이션 성능 분석)

  • Byeon, Wonjun;Lim, Han-wool;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.901-909
    • /
    • 2021
  • Since mobile devices have limited computational resources, it tends to use the cloud to compute or store data. As real-time becomes more important due to 5G, many studies have been conducted on edge clouds that computes at locations closer to users than central clouds. The farther the user's physical distance from the edge cloud connected to base station is, the slower the network transmits. So applications should be migrated and re-run to nearby edge cloud for smooth service use. We run applications in docker containers, which is independent of the host operating system and has a relatively light images size compared to the virtual machine. Existing migration studies have been experimented by using network simulators. It uses fixed values, so it is different from the results in the real-world environment. In addition, the method of migrating images through shared storage was used, which poses a risk of packet content exposure. In this paper, Containers are migrated with Secure CoPy(SCP) method, a data encryption transmission, by establishing an edge computing environment in a real-world environment. It compares migration time with Network File System, one of the shared storage methods, and analyzes network packets to verify safety.

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory Approach

  • Lee, Doo Ho
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.

Analysis of Optimal Energy Consumption for Task Migration in Clouds (클라우드에서 태스크 이주를 위한 최적의 에너지 소비 임계값 분석)

  • Choi, HeeSeok;Choi, SookKyong;Park, JiSu;Suh, Teaweon;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.131-134
    • /
    • 2013
  • 최근 클라우드 컴퓨팅의 발전과 상업적인 성공과 함께 클라우드 자원의 이용률을 최대로 유지하면서 에너지를 효율적으로 사용하기 위한 연구에 대한 관심이 커지고 있다. 자원의 사용률이 최대로 높아지게 되면 에너지 소비량이 급격하게 증가하여 많은 에너지를 사용하게 되므로 자원의 사용율과 에너지 사용은 트레이드오프 관계를 가지게 된다. 따라서 본 논문에서는 자원의 최대 사용 및 효율적인 에너지 사용을 위해 에너지 소비가 최적이 되는 자원 이용률의 임계값을 찾기 위한 연구를 수행하였다. 실험을 위해 자원 중 가장 많은 에너지를 소비하는 CPU를 이용하였고, 전력 측정을 위해 KEM2500 전력계와 ThrottleStop_500 프로그램을 사용하였다. 실험 결과 CPU 사용률이 약 90%일 때 에너지 사용량이 급격하게 증가하였으며, 기존의 평균 자원 이용률과 비교했을 때 12.3% 정도의 전기량이 더 소모됨을 확인하였다. 따라서 클라우드 컴퓨팅에서 CPU 자원의 이용률이 90%일 때 에너지가 최적이라고 할 수 있다.

An Efficient Dynamic Resource Allocation Scheme for Thin-Client Mobile in Cloud Environment (클라우드 환경의 Thin-Client 모바일을 위한 동적 자원 분배 기술)

  • Lee, Jun-Hyung;Huh, Eui-Nam
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.161-168
    • /
    • 2012
  • The study of Cloud based system is emerging to become the core technology in IT field due to the tremendous growth of Cloud Computing. Researches to deliver applications to Thin-Client based mobile virtual machine and Desktop as a Service(DaaS) using Cloud Computing are conducted actively. In this paper, we propose a Cloud system to run the mobile application in the mobile Thin-Client device and resource allocation mechanism Dynamic Resource Allocation Manager for Mobile Application(DRAMMA). Thus, through performance check, we show DRAMMA has improved the utilization of Cloud system, less migration of virtual machines and decreased the error rate of resource allocation. Also our proposed system delivers service more efficiently than the previous resource allocation algorithm.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

Event Log Analysis Framework Based on the ATT&CK Matrix in Cloud Environments (클라우드 환경에서의 ATT&CK 매트릭스 기반 이벤트 로그 분석 프레임워크)

  • Yeeun Kim;Junga Kim;Siyun Chae;Jiwon Hong;Seongmin Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.263-279
    • /
    • 2024
  • With the increasing trend of Cloud migration, security threats in the Cloud computing environment have also experienced a significant increase. Consequently, the importance of efficient incident investigation through log data analysis is being emphasized. In Cloud environments, the diversity of services and ease of resource creation generate a large volume of log data. Difficulties remain in determining which events to investigate when an incident occurs, and examining all the extensive log data requires considerable time and effort. Therefore, a systematic approach for efficient data investigation is necessary. CloudTrail, the Amazon Web Services(AWS) logging service, collects logs of all API call events occurring in an account. However, CloudTrail lacks insights into which logs to analyze in the event of an incident. This paper proposes an automated analysis framework that integrates Cloud Matrix and event information for efficient incident investigation. The framework enables simultaneous examination of user behavior log events, event frequency, and attack information. We believe the proposed framework contributes to Cloud incident investigations by efficiently identifying critical events based on the ATT&CK Framework.