• Title/Summary/Keyword: cloud computing attack

Search Result 70, Processing Time 0.033 seconds

Visual Monitoring System of Multi-Hosts Behavior for Trustworthiness with Mobile Cloud

  • Song, Eun-Ha;Kim, Hyun-Woo;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.347-358
    • /
    • 2012
  • Recently, security researches have been processed on the method to cover a broader range of hacking attacks at the low level in the perspective of hardware. This system security applies not only to individuals' computer systems but also to cloud environments. "Cloud" concerns operations on the web. Therefore it is exposed to a lot of risks and the security of its spaces where data is stored is vulnerable. Accordingly, in order to reduce threat factors to security, the TCG proposed a highly reliable platform based on a semiconductor-chip, the TPM. However, there have been no technologies up to date that enables a real-time visual monitoring of the security status of a PC that is operated based on the TPM. And the TPB has provided the function in a visual method to monitor system status and resources only for the system behavior of a single host. Therefore, this paper will propose a m-TMS (Mobile Trusted Monitoring System) that monitors the trusted state of a computing environment in which a TPM chip-based TPB is mounted and the current status of its system resources in a mobile device environment resulting from the development of network service technology. The m-TMS is provided to users so that system resources of CPU, RAM, and process, which are the monitoring objects in a computer system, may be monitored. Moreover, converting and detouring single entities like a PC or target addresses, which are attack pattern methods that pose a threat to the computer system security, are combined. The branch instruction trace function is monitored using a BiT Profiling tool through which processes attacked or those suspected of being attacked may be traced, thereby enabling users to actively respond.

Cloud Security Scheme Based on Blockchain and Zero Trust (블록체인과 제로 트러스트 기반 클라우드 보안 기법)

  • In-Hye Na;Hyeok Kang;Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2023
  • Recently, demand for cloud computing has increased and remote access due to home work and external work has increased. In addition, a new security paradigm is required in the current situation where the need to be vigilant against not only external attacker access but also internal access such as internal employee access to work increases and various attack techniques are sophisticated. As a result, the network security model applying Zero-Trust, which has the core principle of doubting everything and not trusting it, began to attract attention in the security industry. Zero Trust Security monitors all networks, requires authentication in order to be granted access, and increases security by granting minimum access rights to access requesters. In this paper, we explain zero trust and zero trust architecture, and propose a new cloud security system for strengthening access control that overcomes the limitations of existing security systems using zero trust and blockchain and can be used by various companies.

Internet of Things (IoT) Based Modeling for Dynamic Security in Nuclear Systems with Data Mining Strategy (데이터 마이닝 전략을 사용하여 원자력 시스템의 동적 보안을 위한 사물 인터넷 (IoT) 기반 모델링)

  • Jang, Kyung Bae;Baek, Chang Hyun;Kim, Jong Min;Baek, Hyung Ho;Woo, Tae Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • The data mining design incorporated with big data based cloud computing system is investigated for the nuclear terrorism prevention where the conventional physical protection system (PPS) is modified. The networking of terror related bodies is modeled by simulation study for nuclear forensic incidents. It is needed for the government to detect the terrorism and any attempts to attack to innocent people without illegal tapping. Although the mathematical algorithm of the study can't give the exact result of the terror incident, the potential possibility could be obtained by the simulations. The result shows the shape oscillation by time. In addition, the integration of the frequency of each value can show the degree of the transitions of the results. The value increases to -2.61741 in 63.125th hour. So, the terror possibility is highest in later time.

Security Analysis of the Whirlpool Hash Function in the Cloud of Things

  • Li, Wei;Gao, Zhiyong;Gu, Dawu;Ge, Chenyu;Liao, Linfeng;Zhou, Zhihong;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.536-551
    • /
    • 2017
  • With the advancement and deployment of leading-edge telecommunication technologies for sensing and collecting, computing related information, Cloud of Things (CoTs) has emerged as a typical application platform that is envisioned to revolutionize the daily activities of human society, such as intelligent transportation, modern logistics, food safety, environmental monitoring, etc. To avoid any possible malicious attack and resource abuse, employing hash functions is widely recognized as one of the most effective approaches for CoTs to achieve message integrity and data authentication. The Whirlpool hash function has served as part of the joint ISO/IEC 10118-3 International Standard by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). In this paper, we propose an effective differential fault analysis on Whirlpool in the byte-oriented random fault model. The mathematical analysis and experimental results show that 8 random faults on average are required to obtain the current 512-bit message input of whirlpool and the secret key of HMAC-Whirlpool. Our work demonstrates that Whirlpool and HMAC-Whirlpool are both vulnerable to the single byte differential fault analysis. It provides a new reference for the security analysis of the same structure of the hash functions in the CoTs.

A Design of Certificate Management Method for Secure Access Control in IoT-based Cloud Convergence Environment (IoT기반 클라우드 융합환경에서 안전한 접근제어를 위한 인증서 관리기법 설계)

  • Park, Jung-Oh
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.7-13
    • /
    • 2020
  • IoT which is the core IT of the 4th industrial revolution, is providing various services from users in the conversion with other industries. The IoT convergence technology is leading the communication paradigm of communication environment in accordance with the increase of convenience for users. However, it is urgently needed to establish the security measures for the rapidly-developing IoT convergence technology. As IoT is closely related to digital ethics and personal information protection, other industries should establish the measures for coping with threatening elements in accordance with the introduction of IoT. In case when security incidents occur, there could be diverse problems such as information leakage, damage to image, monetary loss, and casualty. Thus, this paper suggests a certificate management technique for safe control over access in IoT-based Cloud convergence environment. This thesis designed the device/user registration, message communication protocol, and device renewal/management technique. On top of performing the analysis on safety in accordance with attack technique and vulnerability, in the results of conducting the evaluation of efficiency compared to the existing PKI-based certificate management technique, it showed about 32% decreased value.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

A Study on Cloud Computing for Detecting Cyber Attacks (사이버공격 탐지를 위한 클라우드 컴퓨팅 활용방안에 관한 연구)

  • Lee, Jun-Won;Cho, Jae-Ik;Lee, Seok-Jun;Won, Dong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.816-822
    • /
    • 2013
  • In modern networks, data rate is getting faster and transferred data is extremely increased. At this point, the malicious codes are evolving to various types very fast, and the frequency of occurring new malicious code is very short. So, it is hard to collect/analyze data using general networks with the techniques like traditional intrusion detection or anormaly detection. In this paper, we collect and analyze the data more effectively with cloud environment than general simple networks. Also we analyze the malicious code which is similar to real network's malware, using botnet server/client includes DNS Spoofing attack.

A Study on Security Improvement in Hadoop Distributed File System Based on Kerberos (Kerberos 기반 하둡 분산 파일 시스템의 안전성 향상방안)

  • Park, So Hyeon;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.803-813
    • /
    • 2013
  • As the developments of smart devices and social network services, the amount of data has been exploding. The world is facing Big data era. For these reasons, the Big data processing technology which is a new technology that can handle such data has attracted much attention. One of the most representative technologies is Hadoop. Hadoop Distributed File System(HDFS) designed to run on commercial Linux server is an open source framework and can store many terabytes of data. The initial version of Hadoop did not consider security because it only focused on efficient Big data processing. As the number of users rapidly increases, a lot of sensitive data including personal information were stored on HDFS. So Hadoop announced a new version that introduces Kerberos and token system in 2009. However, this system is vulnerable to the replay attack, impersonation attack and other attacks. In this paper, we analyze these vulnerabilities of HDFS security and propose a new protocol which complements these vulnerabilities and maintains the performance of Hadoop.

Analysis of the Impact of Host Resource Exhaustion Attacks in a Container Environment (컨테이너 환경에서의 호스트 자원 고갈 공격 영향 분석)

  • Jun-hee Lee;Jae-hyun Nam;Jin-woo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • Containers are an emerging virtualization technology that can build an isolated environment more lightweight and faster than existing virtual machines. For that reason, many organizations have recently adopted them for their services. Yet, the container architecture has also exposed many security problems since all containers share the same OS kernel. In this work, we focus on the fact that an attacker can abuse host resources to make them unavailable to benign containers-also known as host resource exhaustion attacks. Then, we analyze the impact of host resource exhaustion attacks through real attack scenarios exhausting critical host resources, such as CPU, memory, disk space, process ID, and sockets in Docker, the most popular container platform. We propose five attack scenarios performed in several different host environments and container images. The result shows that three of them put other containers in denial of service.

A Study of Patient's Privacy Protection in U-Healthcare (유헬스케어에서 환자의 프라이버시 보호 방안 연구)

  • Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.913-921
    • /
    • 2012
  • On the strength of the rapid development and propagation of U-healthcare service, the service technologies are full of important changes. However, U-healthcare service has security problem that patient's biometric information can be easily exposed to the third party without service users' consent. This paper proposes a distributed model according authority and access level of hospital officials in order to safely access patients' private information in u-Healthcare Environment. Proposed model can both limit the access to patients' biometric information and keep safe system from DoS attack using time stamp. Also, it can prevent patients' data spill and privacy intrusion because the main server simultaneously controls hospital officials and the access by the access range of officials from each hospital.