• Title/Summary/Keyword: cloud amount

Search Result 388, Processing Time 0.028 seconds

Data Augmentation for Tomato Detection and Pose Estimation (토마토 위치 및 자세 추정을 위한 데이터 증대기법)

  • Jang, Minho;Hwang, Youngbae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-55
    • /
    • 2022
  • In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.

Estimate of Heat Flux in the East China Sea (동지나해의 열속추정에 관한 연구)

  • KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.84-91
    • /
    • 1996
  • Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.

  • PDF

Control of Daily Integral PPE by the Artificial Lighting and shading screen In Greenhouse (인공광 및 차광스크린을 이용한 온실의 일일적산 광합성유효광량자속 조절)

  • 이현우
    • Journal of Bio-Environment Control
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The object of this study was to develop the control technology of daily integral photosynthetic photon flux (PPF) by the artificial lighting and shading screen in greenhouse. The shading time needed to get the target PPF by using two types of shading screens having shading ratio of 55% and 85% was analyzed. The results showed the shading ratio of screen to be installed in greenhouse should be different depending on the amount of target PPF to be controlled. The PPF control experiment by using the 55% shading screen in July and August showed that the maximum difference between measured and calculated value was about 5 mol$.$ $m^{-2}$ $.$ $d^{-1}$ in no shading condition. This difference is satisfactory result because the daily integral PPF is quite different depending on the weather condition. The simulation result about PPF distribution pattern shortened the time needed to find the proper arrangement of artificial lightings in greenhouse. But the further study was required to find the supplemental lighting arrangement to be able to provide the exactly uniform distribution of target light intensity. The supplemental irradiation time needed to acquire the target daily integral PPF for different supplemental light intensities, weather conditions, and months was analyzed. The result showed that the supplemental light intensity should be decided depending on the amount of target PPF to be controlled. The result of PPF control experiment conducted by using 55% shading screen and 300 $\mu$mol$.$ $m^{-2}$ $.$ $s^{-1}$ supplemental light intensity from the end of May to the beginning of June showed that the maximum difference between target and measured value was about 3 mol$.$ $d^{-1}$ $.$ $m^{-2}$ . If we consider that the difference of the daily integral PPF depending on weather condition was the maximum 30 mol$.$ $m^{-2}$ $.$ $d^{-l}$, the control effect was acceptable. Although the result of this study was the PPF control technology to grow lettuce, the data and control method obtained could be employed for other crop production.n.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Analysis of Literatures Related to Crop Growth and Yield of Onion and Garlic Using Text-mining Approaches for Develop Productivity Prediction Models (양파·마늘 생산성 예측 모델 개발을 위한 텍스트마이닝 기법 활용 생육 및 수량 관련 문헌 분석)

  • Kim, Jin-Hee;Kim, Dae-Jun;Seo, Bo-Hun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.374-390
    • /
    • 2021
  • Growth and yield of field vegetable crops would be affected by climate conditions, which cause a relatively large fluctuation in crop production and consumer price over years. The yield prediction system for these crops would support decision-making on policies to manage supply and demands. The objectives of this study were to compile literatures related to onion and garlic and to perform data-mining analysis, which would shed lights on the development of crop models for these major field vegetable crops in Korea. The literatures on crop growth and yield were collected from the databases operated by Research Information Sharing Service, National Science & Technology Information Service and SCOPUS. The keywords were chosen to retrieve research outcomes related to crop growth and yield of onion and garlic. These literatures were analyzed using text mining approaches including word cloud and semantic networks. It was found that the number of publications was considerably less for the field vegetable crops compared with rice. Still, specific patterns between previous research outcomes were identified using the text mining methods. For example, climate change and remote sensing were major topics of interest for growth and yield of onion and garlic. The impact of temperature and irrigation on crop growth was also assessed in the previous studies. It was also found that yield of onion and garlic would be affected by both environment and crop management conditions including sowing time, variety, seed treatment method, irrigation interval, fertilization amount and fertilizer composition. For meteorological conditions, temperature, precipitation, solar radiation and humidity were found to be the major factors in the literatures. These indicate that crop models need to take into account both environmental and crop management practices for reliable prediction of crop yield.

Text Mining and Association Rules Analysis to a Self-Introduction Letter of Freshman at Korea National College of Agricultural and Fisheries (1) (한국농수산대학 신입생 자기소개서의 텍스트 마이닝과 연관규칙 분석 (1))

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Shin, Y.K.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.113-129
    • /
    • 2020
  • In this study we examined the topic analysis and correlation analysis by text mining to extract meaningful information or rules from the self introduction letter of freshman at Korea National College of Agriculture and Fisheries in 2020. The analysis items are described in items related to 'academic' and 'in-school activities' during high school. In the text mining results, the keywords of 'academic' items were 'study', 'thought', 'effort', 'problem', 'friend', and the key words of 'in-school activities' were 'activity', 'thought', 'friend', 'club', 'school' in order. As a result of the correlation analysis, the key words of 'thinking', 'studying', 'effort', and 'time' played a central role in the 'academic' item. And the key words of 'in-school activities' were 'thought', 'activity', 'school', 'time', and 'friend'. The results of frequency analysis and association analysis were visualized with word cloud and correlation graphs to make it easier to understand all the results. In the next study, TF-IDF(Term Frequency-Inverse Document Frequency) analysis using 'frequency of keywords' and 'reverse of document frequency' will be performed as a method of extracting key words from a large amount of documents.

Data Deduplication Method using PRAM Cache in SSD Storage System (SSD 스토리지 시스템에서 PRAM 캐시를 이용한 데이터 중복제거 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.117-123
    • /
    • 2013
  • In the recent cloud storage environment, the amount of SSD (Solid-State Drive) replacing with the traditional hard disk drive is increasing. Management of SSD for its space efficiency has become important since SSD provides fast IO performance due to no mechanical movement whereas it has wearable characteristics and does not provide in place update. In order to manage space efficiency of SSD, data de-duplication technique is frequently used. However, this technique occurs much overhead because it consists of data chunking, hasing and hash matching operations. In this paper, we propose new data de-duplication method using PRAM cache. The proposed method uses hierarchical hash tables and LRU(Least Recently Used) for data replacement in PRAM. First hash table in DRAM is used to store hash values of data cached in the PRAM and second hash table in PRAM is used to store hash values of data in SSD storage. The method also enhance data reliability against power failure by maintaining backup of first hash table into PRAM. Experimental results show that average writing frequency and operation time of the proposed method are 44.2% and 38.8% less than those of existing data de-depulication method, respectively, when three workloads are used.

Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

  • Sun, Guolin;Mareri, Bruce;Liu, Guisong;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4717-4737
    • /
    • 2017
  • Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.

Robust Semi-auto Calibration Method for Various Cameras and Illumination Changes (다양한 카메라와 조명의 변화에 강건한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Recently, many 3D contents have been produced through the multiview camera system. In this system, since a difference of the viewpoint between color and depth cameras is inevitable, the camera parameter plays the important role to adjust the viewpoint as a preprocessing step. The conventional camera calibration method is inconvenient to users since we need to choose pattern features manually after capturing a planar chessboard with various poses. Therefore, we propose a semi-auto camera calibration method using a circular sampling and an homography estimation. Firstly, The proposed method extracts the candidates of the pattern features from the images by FAST corner detector. Next, we reduce the amount of the candidates by the circular sampling and obtain the complete point cloud by the homography estimation. Lastly, we compute the accurate position having the sub-pixel accuracy of the pattern features by the approximation of the hyper parabola surface. We investigated which factor affects the result of the pattern feature detection at each step. Compared to the conventional method, we found the proposed method released the inconvenience of the manual operation but maintained the accuracy of the camera parameters.