• Title/Summary/Keyword: closed-loop identification

Search Result 74, Processing Time 0.026 seconds

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.

Parameter Estimation of Single and Decentralized Control Systems Using Pulse Response Data

  • Cheres, Eduard;Podshivalov, Lev
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2003
  • The One Pass Method (OPM) previously presented for the identification of single input single output systems is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess, iteration, or powerful search methods are required. These features are of interest especially when the parameters of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results against those of two recently published methods based on pulse testing. The comparison is performed using two databases from the literature. These databases include single and multi input-output process transfer functions and relevant disturbances. The closed loop responses of these processes are roughly captured by the previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature, which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable DCSs.

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hun;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.230-248
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as Input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

  • PDF