• Title/Summary/Keyword: closed-loop

Search Result 2,020, Processing Time 0.027 seconds

Designing the Control Loop of a Boost Converter for Distributed Power Applications (분산형 전원 시스템용 승압형 컨버터의 제어 루우프 설계)

  • Kim, Jae-Yeol;Choi, Byung-Cho;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1068-1070
    • /
    • 2000
  • This paper presents a method of designing the control loop for dc-to-dc converters when at characteristics of the converter's load are unknown. In the proposed method, a converter is considered as a stand-alone module that feeds a current sink load, and the control loop is designed in order to maximize the robustness of the converter's closed-loop performance. The proposed method yields a control design that provides predictable and controllable closed-loop performance for the converter loaded with an actual load.

  • PDF

Assessments of baroreflex sensitivity through the closed-loop feedback model between RR fluctuation and arterial blood pressure fluctuation (RR간격변동과 열합변동간의 폐루프 귀환 모델을 통한 압수용체반사감도의 평가)

  • 신건수;최석준;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1643-1646
    • /
    • 1997
  • In this study, the method is proposed, which enable us to noninvasively assess baroreflex sensitivity through the closed-loop feedback modle between RR flucturarion and arterial blood pressure fluctuation. The proposed indexes of baroreflex sensitivity, BRS$_{LF}$와 BRS$_{HF}$ are calculated by the modulus (or gain) of the transfer function between fluctuatuons in blood pressure and RR interval in the LF band HF band, where the coherence is more than 0.5 to evaluate the performance of the proposed method, it is applied to various cardiovascular variability signals obtained form subjects under the submaximal ecericse on bicycle ergometner. In result it is concluded that the proposed method can noninvasively assess the baroreflex sensitivity.ty.

  • PDF

Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik;Kim, Chang-Won;Hong, Kyung-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.

Eigenstructure Assignment Considering Probability of Instability with Flight Control Application

  • Seo, Young-Bong;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.607-613
    • /
    • 2007
  • Eigenstructure assignment provides the advantage of allowing great flexibility in shaping the closed-loop system responses by allowing specification of closed-loop eigenvalues and corresponding eigenvectors. But, the general eigenstructure assignment methodologies cannot guarantee stability robustness to parameter variations of a system. In this paper, we present a novel method that has the capability of exact assignment of an eigenstructure which can consider the probability of instability for LTI (Linear Time-Invariant) systems. The probability of instability of an LTI system is determined by the probability distributions of the closed-loop eigenvalues. The stability region for the system is made probabilistically based upon the Monte Carlo evaluations. The proposed control design method is applied to design a flight control system with probabilistic parameter variations to confirm the usefulness of the method.

Modeling of Grade Change Operations in Paper Mills

  • Ko, Jun-Seok;Yeo, Yeong-Koo;Ha, Seong-Mun;Lim, Jung-Woo;Ko, Du-Seok;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • In this work we developed the closed-loop model of a paper machine during grade change with the intention to provide a reliable dynamic model to be used in the model-based grade change control scheme. During the grade change, chemical and physical characteristics of paper process change with time. It is very difficult to represent these characteristics on-line by using physical process models. In this work, the wet circulation part and the drying section were considered as a single process and closed-loop identification technique was used to develop the grade change model. Comparison of the results of numerical simulations with mill operation data demonstrates the effectiveness of the model identified.

Interval finite element method for complex eigenvalues of closed-loop systems with uncertain parameters

  • Zhang, XiaoMing;Ding, Han
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.163-178
    • /
    • 2007
  • In practical engineering, the uncertain concept plays an important role in the control problems of the vibration structures. In this paper, based on matrix perturbation theory and interval finite element method, the closed-loop vibration control system with uncertain parameters is discussed. A new method is presented to develop an algorithm to estimate the upper and lower bounds of the real parts and imaginary parts of the complex eigenvalues of vibration control systems. The results are derived in terms of physical parameters. The present method is implemented for a vibration control system of the frame structure. To show the validity and effectiveness, we compare the numerical results obtained by the present method with those obtained by the classical random perturbation.

Robust Control using Observer for Brushless DC Motor (BLDC 모터의 관측자를 이용한 강인 제어)

  • Yu, Byung-Sam;Shin, Doo-Jin;Park, Eik-Dong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.552-554
    • /
    • 1999
  • In this paper, a robust control system with the disturbance observer is proposed for BLDC servo system. The overall control system consists of the speed controller which is implemented with PI controller and the disturbance observer with free parameters. The proposed control system is designed the command input response and the closed loop characteristics independently by using two-degrees-of-freedom concept, so it can improve the closed loop characteristics with no influence on the command input response. The effective suppression of disturbance with the observer improves the characteristics of the closed loop of the system. And also, by fluting the bandwidth of free parameters, measurement noise is considered. To verify the better performance of the proposed control system than that of the conventional PI controllers, the performance of the controller is analyzed theoretically and some simulation results are presented.

  • PDF

A PID Controller Tuning of time delay system using VRFT (VRFT를 이용한 시간지연 시스템의 PID 제어기 동조)

  • Oh, Yun-Ki;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1840-1841
    • /
    • 2006
  • Plants with long time-delays can not be often controlled effectively using a simple PID controller. The main reason for this is that the additional phase lag contributed by the time-delay tends to destabilize the closed-loop system. The stability problem can be solved by smith predictor. However, in this case responses are very sensitive to the estimated model errors. To reduce sensitive problem, this paper is presented based on virtual reference feedback tuning of the time delay plant using the closed-loop test to find parameters for a PID controller using the closed-loop test data.

  • PDF

A Study on the Design of a Controller with the Manabe Standard Form (Manabe표준형을 이용한 제어기 설계에 관한 연구)

  • Kang, Hwan-Il;Jung, Yo-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.537-539
    • /
    • 1999
  • When dealing with a controller design in the two parameter configuration, there are some situations when neither a known pseudo inverse technique nor the inverse method can be applicable. In this case, we propose two methods of designing a controller by the gradient algorithm and the new pseudo inverse method such that the designed closed loop polynomial may be equal to or nearly equal to the desired closed loop polynomial. We compare the proposed methods with the known methods. We use the Manabe standard form as a desired closed loop characteristic polynomial.

  • PDF

Identification and Control of Dynamical System Using Neural Networks (뉴럴 네트워크를 이용한 동적 시스템 식별과 제어)

  • Park, Seong-Wook;Lee, Dong-Heon;Suh, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.290-292
    • /
    • 1993
  • This paper investigates the identification of discrete time nonlinear system using neural networks with two hidden layers. A New learning method of both NNI and NNC is proposed. For control of the dynamical system we use two neural networks, one for identification and the other for control, and proposed NN control system is based on a framework of MRC. We define a closed loop error. In the proposed learning method, the identification error and the closed loop error are utilized to train the NNI, whareas the control error and the closed loop error are used to train the NNC, The simulation results show that the identification and control schemes suggested are practically feasible and effective.

  • PDF