• 제목/요약/키워드: closed-form solution

검색결과 446건 처리시간 0.034초

Physics-based modelling for a closed form solution for flow angle estimation

  • Lerro, Angelo
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.273-287
    • /
    • 2021
  • Model-based, data-driven and physics-based approaches represent the state-of-the-art techniques to estimate the aircraft flow angles, angle-of-attack and angle-of-sideslip, in avionics. Thanks to sensor fusion techniques, a synthetic sensor is able to provide estimation of flow angles without any dedicated physical sensors. The work deals with a physics-based scheme derived from flight mechanic theory that leads to a nonlinear flow angle model. Even though several solvers can be adopted, nonlinear models can be replaced with less accurate but straightforward ones in practical applications. The present work proposes a linearisation to obtain the flow angles' closed form solution that is verified using a flight simulator. The main objective of the paper, in fact, is to analyse the estimation degradation using the proposed closed form solutions with respect to the nonlinear scheme. Moreover, flight conditions, where the proposed closed form solutions are not applicable, are identified.

모우드III 하중하의 계면균열에서의 소성변형 (Plastic Deformation in an Interface Crack under Mode III Loads)

  • 박재학
    • 한국안전학회지
    • /
    • 제2권3호
    • /
    • pp.21-27
    • /
    • 1987
  • The effect of plastic deformation in an interfacial crack is considered. Yield zones are assumed to have the form of a strip along the interface. The crack is subjected to mode III loads at infinity and lies along the interface of two semi-infinite planes with different material properties. The size of the yield zones, the relation between the size of the yield zone and CTOD are obtained in a closed form solution. The J integral also can be obtained in a closed form Solution.

  • PDF

An Analysis of Inverse Kinematics and Singular Configuration for Six Axes Robot with Wrist Offset (ICEIC'04)

  • Lee YoungDae;Cho KumBae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.263-268
    • /
    • 2004
  • The inverse kinematics problem is to find a set of joint variable values that will place the end effector of a robot manipulator into a given pose. Pieper has shown that a sufficient condition for a manipulator to have a closed form solution is that three adjacent joint axes intersects, hence the six axes robot with spherical wrist allows closed form solution. But many industrial robots have a non-spherical wrist to provide a stronger wrist configuration so that they can handle heavy payloads. Also, the use of a non-spherical wrist can result in a cheap and simple wrist arrangement than when all three axes intersect at a common point. In these cases, closed form solutions cannot be found. Therefore numerical technique must be used to solve the inverse kinematics equations. This paper proposes a new algorithm that can be used for finding inverse kinematics solution of the six axes robot with non-spherical wrist. Computer simulations are provided to prove the usefulness of our method.

  • PDF

THE PRICING OF VULNERABLE POWER OPTIONS WITH DOUBLE MELLIN TRANSFORMS

  • HA, MIJIN;LI, QI;KIM, DONGHYUN;YOON, JI-HUN
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.677-688
    • /
    • 2021
  • In the modern financial market, the scale of financial instrument transactions in the over-the-counter (OTC) market are increasing. However, in this market, there exists a counterparty credit risk. Herein, we obtain a closed-form solution of power option with credit risks, using the double Mellin transforms. We also use a numerical method to compare the differentiations of option price between the closed-form solution and Monte-Carlo simulation. The result shows that the closed-form solution is precise. In addition, the option's price is sensitive to the exponent of the maturity stock price.

퍼지기반 융합 무선위치추정기법 (A Fuzzy-based Fusion Wireless Localization Method)

  • 조성윤
    • 한국전자통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.507-512
    • /
    • 2015
  • 거리 측정정보를 사용하는 무선위치추정시스템에서 추정기법으로 반복기법기반 근사해를 주로 많이 사용하고 있으나 지역최소문제 및 계산량을 고려해 대안으로 선형 닫힌 형태의 해가 연구되어 왔다. 그러나 각 닫힌 형태의 해는 별도의 특성을 가진 오차요인을 갖고 있으며 이 문제로 인해 그 사용이 제한되기도 한다. 본 논문에서는 대표적인 두 닫힌 형태의 해를 융합하여 각 해가 갖는 오차요인을 서로 상쇄시키는 기법을 제안한다. 두 해를 융합하기 위한 가중치를 각 오차요인이 갖는 오차 특성 기반 퍼지 기법으로 결정하는 방법을 사용한다. 제안된 기법의 성능은 시뮬레이션 기반으로 검증한다.

정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용 (Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator)

  • 김희국;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

거리정보 기반 무선위치추정을 위한 혼합 폐쇄형 해 (Hybrid Closed-Form Solution for Wireless Localization with Range Measurements)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.633-639
    • /
    • 2013
  • Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.

기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석 (The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion)

  • 배형섭;백재호;박명관
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

해석적인 기구학을 이용한 다물체계의 동력학해석 (Dynamics of multibody systems with analytical kinematics)

  • 이돈용;염영일;정완균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.289-292
    • /
    • 1994
  • In this paper, the equations of motion are constructed systematically for multibody systems containing closed kinematic loops. For the displacement analysis of the closed loops, we introduce a new mixed coordinates by adding to the reference coordinates, relative coordinates corresponding to the degrees of freedom of the system. The mixed coordinates makes easy derive the explicit closed form solution. The explicit functional relationship expressed in closed form is of great advantages in system dimension reduction and no need of an iterative scheme for the displacement analysis. This forms of equation are built up in the general purpose computer program for the kinematic and dynamic analysis of multiboty systems.

  • PDF