• Title/Summary/Keyword: closed model

Search Result 1,644, Processing Time 0.03 seconds

A Note to the Stability of Fuzzy Closed-Loop Control Systems

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • Chen and Chen(FSS, 1993, 159-168) presented a reasonable analytical model of fuzzy closed-loop systems and proposed a method to analyze the stability of fuzzy control by the relational matrix of fuzzy system. Chen, Lu and Chen(IEEE Trans. Syst. Man Cybern., 1995, 881-888) formulated the sufficient and necessary conditions on stability of fuzzy closed-loop control systems. Gang and Chen(FSS, 1996, 27-34) deduced a linguistic relation model of a fuzzy closed loop control system from the linguistic models of the fuzzy controller and the controlled process and discussed the linguistic stability of fuzzy closed loop system by a linguistic relation matrix. In this paper, we study more on their models. Indeed, we prove the existence and uniqueness of equilibrium state $X_e$ in which fuzzy system is stable and give closed form of $X_e$. The same examples in Chen and Chen and Gang and Chen are treated to analyze the stability of fuzzy control systems.

  • PDF

'Modularised' Closed-Form Mathematical model for predicting the bracing performance of plasterboard clad walls

  • Liew, Y.L.;Gad, E.F.;Duffield, C.F.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.45-67
    • /
    • 2005
  • This paper presents a new approach to predict the racking load-displacement response of plasterboard clad walls found in Australian light-framed residential structures under monotonic racking load. The method is based on a closed-form mathematical model, described herein as the 'Modularised' Closed-Form Mathematical model or MCFM model. The model considers the non-linear behaviour of the connections between the plasterboard cladding and frame. Furthermore, the model is flexible as it enables incorporation of different nailing patterns for the cladding. Another feature of this model is that the shape of stud deformation is not assumed to be a specific function, but it is computed based on the strain energy approach to take account of the actual load deformation characteristics of particular walls. Verification of the model against the results obtained from a detailed Finite Element (FE) model is also reported. Very good agreement between the closed form solution and that of the FE model was achieved.

Adaptive Hybrid Genetic Algorithm Approach for Optimizing Closed-Loop Supply Chain Model (폐쇄루프 공급망 모델 최적화를 위한 적응형혼합유전알고리즘 접근법)

  • Yun, YoungSu;Chuluunsukh, Anudari;Chen, Xing
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.79-89
    • /
    • 2017
  • The Optimization of a Closed-Loop Supply Chain (CLSC) Model Using an Adaptive Hybrid Genetic Algorithm (AHGA) Approach is Considered in this Paper. With Forward and Reverse Logistics as an Integrated Logistics Concept, The CLSC Model is Consisted of Various Facilities Such as Part Supplier, Product Manufacturer, Collection Center, Recovery Center, etc. A Mathematical Model and the AHGA Approach are Used for Representing and Implementing the CLSC Model, Respectively. Several Conventional Approaches Including the AHGA Approach are Used for Comparing their Performances in Numerical Experiment.

A study on the computer simulation model of the closed moving system using the nutation force (폐쇄된 계의 장동 힘에 의한 이동장치의 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.331-336
    • /
    • 2005
  • The closed movement produced vertically on the position of a motor is a notation movement produced by a notation force , while the horizontal movement can be shown by the coriolis force and the transverse force of realizing that the closed movement of the closed system is to be rotation motion. The notation movement is a vertical closed movement and by searching the equation which becomes an equation model, after comparing the simulation data from the equation model with data of a real device to use it into the computer simulation model, the additional variable elements were decided. As the result, the energy imbalance element is added as a variable about load which is relevant to friction coefficient and pole of a motor in the gravitational field. The simulation can be applied as a real physical law of the graphic game and haptic program.

  • PDF

Investigation of Boiling Heat Transfer Characteristics of Two-Phase Closed Thermosyphons with Various Internal Grooves

  • Han, Ku-Il;Cho, Dong-Hyun;Park, Jong-Un
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1739-1745
    • /
    • 2003
  • The boiling heat transfer characteristics of two-phase closed thermosyphons with internal grooves are studied experimentally and a simple mathematical model is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of a two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tube is also tested for comparison. Methanol is used as working fluid. The effects of the number of grooves, the operating temperature, the heat flux are investigated experimentally. From these experimental results, a simple mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphon. And also the effects of the number of grooves, the operating temperature, the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical model is obtained. The experimental results show that the number of grooves and the amount of the working fluid are very important factors for the operation of thermosyphons. The two-phase closed thermosyphon with copper tubes having 60 internal grooves shows the best boiling heat transfer performance.

Novel Control Method for a Hybrid Active Power Filter with Injection Circuit Using a Hybrid Fuzzy Controller

  • Chau, MinhThuyen;Luo, An;Shuai, Zhikang;Ma, Fujun;Xie, Ning;Chau, VanBao
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.800-812
    • /
    • 2012
  • This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.

CO concentration distribution in a tunnel model closed at left end side using CFD

  • Peng, Lu;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.282-290
    • /
    • 2013
  • A primary air pollutant as an indicator of air quality released from incomplete combustion is Carbon monoxide. A study of the distributions of CO concentration with no heat source in a tunnel model closed at left end side is simulated with a commercial CFD code. The tunnel model is used to investigate the CO concentration distributions at three Reynolds numbers of 990, 1970, and 3290. which are computed by the inlet velocities of 0.3, 0.6 and 1.0 m/s. The CFD predictive approaches can be useful for a better design to analyze the distributions of CO concentrations. In the case of the tunnel model closed at left end side alone, the concentration changes of x/H=-5 and -2.5 have the similar laminar characteristics like the case of the tunnel model closed at both end sides expecially at low values of Reynolds number. Irregular average CO concentration variations at Re=1790 are considered that the transition from laminar to turbulent flow occurs even in three different tunnel models.

State-of-charge Estimation for Lithium-ion Batteries Using a Multi-state Closed-loop Observer

  • Zhao, Yulan;Yun, Haitao;Liu, Shude;Jiao, Huirong;Wang, Chengzhen
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1038-1046
    • /
    • 2014
  • Lithium-ion batteries are widely used in hybrid and pure electric vehicles. State-of-charge (SOC) estimation is a fundamental issue in vehicle power train control and battery management systems. This study proposes a novel model-based SOC estimation method that applies closed-loop state observer theory and a comprehensive battery model. The state-space model of lithium-ion battery is developed based on a three-order resistor-capacitor equivalent circuit model. The least square algorithm is used to identify model parameters. A multi-state closed-loop state observer is designed to predict the open-circuit voltage (OCV) of a battery based on the battery state-space model. Battery SOC can then be estimated based on the corresponding relationship between battery OCV and SOC. Finally, practical driving tests that use two types of typical driving cycle are performed to verify the proposed SOC estimation method. Test results prove that the proposed estimation method is reasonably accurate and exhibits accuracy in estimating SOC within 2% under different driving cycles.