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THE PRICING OF QUANTO OPTIONS IN THE DOUBLE

SQUARE ROOT STOCHASTIC VOLATILITY MODEL

Youngrok Lee and Jaesung Lee

Abstract. We drive a closed-form expression for the price of a European
quanto call option in the double square root stochastic volatility model.

1. Introduction

A quanto is a type of financial derivative whose pay-out currency differs from
the natural denomination of its underlying financial variable, which allows that
investors are to obtain exposure to foreign assets without the corresponding
foreign exchange risk. A quanto option has both the strike price and the
underlying asset price denominated in foreign currency. At exercise, the value
of the option is calculated as the option’s intrinsic value in the foreign currency,
which is then converted to the domestic currency at the fixed exchange rate.

Pricing options based on the classical Black-Scholes model, on which most
of the research on quanto options has focused, has a problem of assuming a
constant volatility which leads to smiles and skews in the implied volatility
of the underlying asset. For that reason, in valuing quanto option, it is nat-
ural to consider a stochastic volatility model. Stochastic volatility models,
such as Hull-White model [4], Stein-Stein model [8] and Heston model [3], are
frequently used in pricing various kinds of European options. Despite its im-
portance, very few researches have been done on pricing quanto option using a
stochastic volatility model primarily due to the sophisticated stochastic process
for underlying assets and volatilities as well as the difficulty of finding analytic
form of the option price.

To mention some of the work on pricing quanto options with stochastic
volatilities, F. Antonelli et al. [1] used a method of expanding and approximat-
ing with respect to correlation parameters to find analytic formula of exchange
options with stochastic volatilities. Using the technique developed in [1], J.
Park et al. [6] got an analytic approximation value for a quanto option price in
the Hull-White stochastic volatility model. A. Giese [2] provided a closed-form
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expression for the price of quanto option in the Stein-Stein stochastic volatility
model, which was influenced by the previous work of R. Schöbel and J. Zhu
[7].

On the other hand, extending to a general equilibrium framework of the
Cox-Ingersoll-Ross process, F. A. Longstaff [5] introduced a double square root
model of stochastic interest rates to describe nonlinear term structures observed
in yield curves. Later, J. Zhu [9], [10] presented an innovative modification of
stochastic volatility models specified as a double square root stochastic process
with the restriction of parameters.

In this paper, motivated by A. Giese [2] and J. Zhu [10], we drive a closed-
form expression for the price of a quanto call option in the double square root
stochastic volatility model. Here, we use the double square root stochastic
process with the restriction of parameters introduced in [10] to get the main
theorem.

We introduce preliminary materials on a quanto and the double square root
stochastic volatility model, and specify dynamics of the processes of underlying
asset and its volatility under the quanto measure in Section 2. Then, in Section
3, we drive a closed-form expression of a quanto option price under the model
specified in Section 2. Theorem 3.3 is the main result of the paper.

2. Model specification

For a non-dividend paying asset, the process of the asset price St may be
assumed to be denominated in foreign currency X and to have the following
dynamics:

dSt = rXStdt+
√
vtStdB

Q
X

t ,(1)

dvt = κ (θ −
√
vt) dt+ ξ

√
vtdW

Q
X

t(2)

under the risk-neutral probability measure QX , where BQ
X

t and WQ
X

t are two
standard Brownian motions, rX is the foreign riskless rate and vt follows the
stochastic volatility process of St with constant parameters κ, θ and ξ. Since
there are two square root terms in (2), it is referred to as the double square
root process, whose basic features are described in Chapter 3.4 of [10]. To give
a closed-form expression, we should add a restriction of parameters so that
4κθ = ξ2, which is the strong condition to be able to analytically calculate
some special conditional expectation included vt. This particular meaning is
explained in [5] minutely. Furthermore, we assume an investor whose domestic
currency is Y and who wishes to obtain exposure to the asset price St without
carrying the corresponding foreign exchange risk. For the rest of Section 2, we
mostly follow the notations of [2].

Let Z
Y/X
t denote the price of one unit of currency Y in units of currency X

and we assume that Z
Y/X
t follows the standard Black-Scholes type dynamics
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under QX such as

dZ
Y/X
t =

(
rX − rY

)
Zt

Y/Xdt+ σZ
Y/X
t dB̂Q

X

t ,

where B̂Q
X

t is a standard Brownian motion under QX , rY is the domestic
riskless rate and σ is the constant volatility of the foreign exchange rate Zt.
This model allows three constant correlations ρ, ν and β satisfying

dBQ
X

t dWQ
X

t = ρdt, dBQ
X

t dB̂Q
X

t = νdt, dWQ
X

t dB̂Q
X

t = βdt.

Using the change of measure from QX to the domestic risk-neutral proba-
bility measure QY with the Radon-Nikodým derivative

dQY

dQX

∣
∣
∣
∣
Ft

=
Z

Y/X
t

Z
Y/X

0

e(r
Y −rX)t = e−

1
2σ

2t+σB̂
QX

t ,

the Girsanov’s Theorem implies that the processes BQ
Y

t , WQ
Y

t and B̂Q
Y

t de-
fined by

dBQ
Y

t = dBQ
X

t − νσdt,

dWQ
Y

t = dWQ
X

t − βσdt,

dB̂Q
Y

t = dB̂Q
X

t + σdt

are again standard Brownian motions under the domestic risk-neutral proba-
bility measure QY , so called the quanto measure. Thus, the foreign exchange

rate Z
X/Y
t denoting the price in currency X per unit of the domestic currency

Y follows

dZ
X/Y
t =

(
rY − rX

)
Zt

X/Y dt+ σZ
X/Y
t dB̂Q

Y

t .

Also, we obtain the following dynamics of St and vt under Q
Y :

dSt =
(
rX + νσ

√
vt
)
Stdt+

√
vtStdB

Q
Y

t ,(3)

dvt = κ̂
(

θ̂ −
√
vt

)

dt+ ξ
√
vtdW

Q
Y

t(4)

with κ̂ = κ− βσξ and θ̂ = κθ
κ−βσξ

. We notice that (4) maintains the same form

as (2) so that 4κ̂θ̂ = ξ2 also has to be satisfied.

3. A closed-form quanto option price

Here, using the model specified in previous section, we drive a closed-form
expression of a quanto option price. The following two lemmas are about some
special conditional expectations under the measure QY , both of which are
crucial ingredients to the main result of the paper.
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Lemma 3.1. Under the assumption of (4), together with constants m1, m2

and m3, we get the following equality:

EQY

[

e−
∫

T

t
(m1vs+m2

√
vs)ds+m3vT

∣
∣
∣Ft

]

= A (t) eB(t)vt+C(t)
√
vt ,

where

A (t) =
1

√
γ4

exp

[(
γ2
3 − κ̂2γ2

1

)
(T − t)

2ξ2γ2
1

+

(
γ2γ3 − 2κ̂γ2

1

)
γ3

2ξ2γ4
1

(
1

γ4
− 1

)

+

sinh {γ1 (T − t)}

{

κ̂2γ2
1 − κ̂γ2γ3 − γ2

3 + 1
2

(
γ2γ3

γ1

)2
}

2ξ2γ3
1γ4






,

B (t) = −
2γ1
ξ2

·
2γ1 sinh {γ1 (T − t)}+ γ2 cosh {γ1 (T − t)}

2γ1 cosh {γ1 (T − t)}+ γ2 sinh {γ1 (T − t)}

and

C (t) =
2 sinh

{
γ1(T−t)

2

}

ξ2γ1γ4

×

[

(κ̂γ2 − 2γ3) cosh

{
γ1 (T−t)

2

}

+

(

2κ̂γ1−
γ2γ3
γ1

)

sinh

{
γ1 (T−t)

2

}]

with

γ1 =

√

2m1ξ2

2
, γ2 = −m3ξ

2, γ3 =
m2ξ

2

2
,

γ4 = cosh {γ1 (T − t)}+
γ2
2γ1

sinh {γ1 (T − t)}.

Proof. Let us define

y (t, vt) = EQY

[

e−
∫

T

t
(m1vs+m2

√
vs)ds+m3vT

∣
∣
∣Ft

]

.

Then according to the Feynman-Kač formula, y is the solution of the following
PDE:

ξ2

2
v
∂2y

∂v2
+ κ̂

(

θ̂ −
√
v
) ∂y

∂v
−
(
m1v +m2

√
v
)
y +

∂y

∂t
= 0

with the terminal condition

y (T, vT ) = em3vT .

Now, putting our solution as the following functional form:

y (t, vt) = A (t) eB(t)vt+C(t)
√
vt ,
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we have the following ODEs1:

A′ (t) = −
ξ2

8
A (t)C (t)

2
−

ξ2

4
A (t)B (t) +

κ̂

2
A (t)C (t) ,

B′ (t) = −
ξ2

2
B (t)

2
+m1,

C′ (t) = −
ξ2

2
B (t)C (t) + κ̂B (t) +m2

with terminal conditions

A (T ) = 1, B (T ) = m3, C (T ) = 0.

By solving these ODEs, we complete the proof of the lemma. �

Using the result obtained in Lemma 3.1, we can compute EQY [ST | Ft] which
represents, from the risk-neutral valuation, the value of a quanto forward con-
tract.

Lemma 3.2. Under the assumptions of (3) and (4), we get the following

equality:

EQY [ST | Ft] = Ste
rX(T−t)− ρ

ξ{vt+κ̂θ̂(T−t)}EQY

[

e−
∫

T

t
(c1vs+c2

√
vs)ds+c3vT

∣
∣
∣Ft

]

,

where c1, c2 and c3 are constants with

c1 =
ρ2

2
, c2 = −νσ −

ρκ̂

ξ
, c3 =

ρ

ξ
.

Proof. Applying the Itô formula to (3) together with the tower property, we
get
(5)

EQY [ST | Ft] = Ste
rX(T−t)EQY

[

eνσ
∫

T

t

√
vsds−

ρ2

2

∫

T

t
vsds+ρ

∫

T

t

√
vsdW

QY

s

∣
∣
∣
∣
Ft

]

,

where we may write BQ
Y

t as BQ
Y

t = ρWQ
Y

t +
√

1− ρ2Wt with Wt being a

QY -standard Brownian motion independent of WQ
Y

t . From (4), we have

(6)

∫ T

t

√
vsdW

Q
Y

s =
1

ξ

{

vT − vt − κ̂θ̂ (T − t) + κ̂

∫ T

t

√
vsds

}

.

Substituting (6) into (5), we obtain

EQY [ST | Ft] = Ste
rX(T−t)− ρ

ξ{vt+κ̂θ̂(T−t)}EQY

[

e−
∫

T

t
(c1vs+c2

√
vs)ds+c3vT

∣
∣
∣Ft

]

with

c1 =
ρ2

2
, c2 = −νσ −

ρκ̂

ξ
, c3 =

ρ

ξ
.

�

1Due to the restriction that 4κ̂θ̂ = ξ2, the coefficient of 1
vt

vanishes in the calculating

course.
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Using the results obtained in Lemma 3.1 and Lemma 3.2, we can obtain a
closed-form expression of the quanto option price. Here is the main theorem.

Theorem 3.3. Let us denote the log-asset price by xt = lnSt. Under the as-

sumptions of (3) and (4), the price of a European quanto call option in currency

Y with strike price K and maturity T is given by

cq (t, St) = EQY [ST | Ft] e
−rY (T−t)P1 −Ke−rY (T−t)P2,

where P1, P2 are defined by

Pj =
1

2
+

1

π

∫ ∞

0

Re

[
eiφ lnKfj (φ)

iφ

]

dφ

for j = 1, 2, in which

f1 (φ) =
e(1+iφ)[rX(T−t)+xt−

ρ

ξ{vt+κ̂θ̂(T−t)}]

EQY [ST | Ft]
EQY

[

e−
∫

T

t
(m1vs+m2

√
vs)ds+m3vT

∣
∣
∣Ft

]

with

m1 =
ρ2

2
(1 + iφ) , m2 = − (1 + iφ)

(

νσ +
ρκ̂

ξ

)

, m3 =
ρ

ξ
(1 + iφ)

and

f2 (φ) =
eiφ[r

X(T−t)+xt−
ρ

ξ{vt+κ̂θ̂(T−t)}]

EQY [ST | Ft]
EQY

[

e−
∫

T

t
(n1vs+n2

√
vs)ds+n3vT

∣
∣
∣Ft

]

with

n1 = iφ
ρ2

2
, n2 = −iφ

(

νσ +
ρκ̂

ξ

)

, n3 = iφ
ρ

ξ
.

Proof. From the risk-neutral valuation, the price cq (t, St) of a European quanto
call option in currency Y with strike price K and maturity T is given by

cq (t, St) = e−rY (T−t)EQY [max (ST −K, 0)| Ft] .

For a new risk-neutral probability measure Q̃Y , the Radon-Nikodým derivative
of Q̃Y with respect to QY is defined by

dQ̃Y

dQY
=

ST

EQY [ST | Ft]
.

Thus, the price of a quanto call option can be rewritten as

cq (t, St) = e−rY (T−t)EQY

[
ST1{ST>K} −K1{ST>K}

∣
∣Ft

]

= EQY [ST | Ft] e
−rY (T−t)Q̃Y (ST > K)−Ke−rY (T−t)QY (ST > K)

= EQY [ST | Ft] e
−rY (T−t)P1 −Ke−rY (T−t)P2

with the risk-neutralized probabilities P1 and P2. Now, putting xt = lnSt, the
corresponding characteristic functions f1 and f2 can be represented as

f1 (φ) = E
Q̃Y

[
eiφxT

∣
∣Ft

]
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=
1

EQY [ST | Ft]
EQY

[

e(1+iφ)xT

∣
∣
∣Ft

]

,

f2 (φ) = EQY

[
eiφxT

∣
∣Ft

]
.

On the other hand, applying the Itô formula to (3), we have

dxt =

(

rX + νσ
√
vt −

1

2
vt

)

dt+ ρ
√
vtdW

Q
Y

t +
√

1− ρ2
√
vtdWt.

From (6), we obtain

f1 (φ) =
e(1+iφ)[rX(T−t)+xt−

ρ

ξ{vt+κ̂θ̂(T−t)}]

EQY [ST | Ft]
EQY

[

e−
∫

T

t
(m1vs+m2

√
vs)ds+m3vT

∣
∣
∣Ft

]

with

m1 =
ρ2

2
(1 + iφ) , m2 = − (1 + iφ)

(

νσ +
ρκ̂

ξ

)

, m3 =
ρ

ξ
(1 + iφ) .

Similarly, we also obtain

f2 (φ) =
eiφ[r

X(T−t)+xt−
ρ

ξ{vt+κ̂θ̂(T−t)}]

EQY [ST | Ft]
EQY

[

e−
∫

T

t
(n1vs+n2

√
vs)ds+n3vT

∣
∣
∣Ft

]

with

n1 = iφ
ρ2

2
, n2 = −iφ

(

νσ +
ρκ̂

ξ

)

, n3 = iφ
ρ

ξ
.

Here, each value of risk-neutral expectation above was obtained in previous
Lemmas.

By having closed-form solutions for the characteristic functions f1 and f2,
the Fourier inversion formula allows us to compute the probabilities P1 and P2

as follows:

Pj =
1

2
+

1

π

∫ ∞

0

Re

[
eiφ lnKfj (φ)

iφ

]

dφ

for j = 1, 2. �

Acknowledgement. The authors want to express their gratitude to the
anonymous referee for helpful comments.

References

[1] F. Antonelli, A. Ramponi, and S. Scarlatti, Exchange option pricing under stochastic

volatility: a correlation expansion, Rev. Deriv. Res. 13 (2010), no. 1, 45–73.
[2] A. Giese, Quanto adjustments in the presence of stochastic volatility, Risk Magazine,

Mar 14, 2012.
[3] S. L. Heston, A closed-form solution for options with stochastic volatility with applica-

tions to bond and currency options, Rev. Financ. Stud. 6 (1993), no. 2, 327–343.
[4] J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J.

Finance 42 (1987), no. 2, 281–300.
[5] F. A. Longstaff, A nonlinear general equilibrium model of the term structure of interest

rates, J. Financ. Econ. 23 (1989), 195–224.



496 Y. LEE AND J. LEE

[6] J. Park, Y. Lee, and J. Lee, Pricing of quanto option under the Hull and White stochastic

volatility model, Commun. Korean Math. Soc. 28 (2013), no. 3, 615–633
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