• Title/Summary/Keyword: closed form expression

Search Result 191, Processing Time 0.025 seconds

Performance Analysis of Amplify-and-Forward Relaying in Cooperative Networks with Partial Relay Selection (부분 중계노드 선택 기반의 협력 네트워크에서 증폭 후 전송 방식에 대한 성능분석)

  • Hwang, Ho-seon;Ahn, Kyung-seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2317-2323
    • /
    • 2015
  • In this paper, we analyze the performance of dual-hop amplify-and-forward (AF) relaying in cooperative networks with partial relay selection. An AF relay gain considered in this paper includes channel-noise-assisted relay gain. Leveraging a received signal-to-noise ratio (SNR) model, we derive exact closed-form expressions for the probability density function (pdf) and cumulative distribution function (cdf) of the end-to-end SNR. Moreover, an exact closed-form expression of the ergodic capacity for dual-hop AF relaying with channel-noise-assisted relay gain and partial relay selection is investigated. The analytical results shown in this paper are confirmed by Monte-Carlo simulations.

Power-and-Bandwidth Efficient Cooperative Transmission Protocol in Wireless Sensor Networks (전력 및 대역폭 효율성있는 무선센서네트워크협력 전송에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Choi Jeong-Ho;Jeong Hwi-Jae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.185-194
    • /
    • 2006
  • In this paper, we first propose a power-and-bandwidth efficient cooperative transmission protocol where a sensor node assists two others for their data transmission to a clusterhead in WSNs (Wireless Sensor Networks) using LEACH (Low-Energy Adaptive Clustering Hierarchy). Then we derive its closed-form BER expression which Is also a general BER one for the decode-and-forward protocol (DF) and Prove that the proposed protocol performs as same as the conventional DF but obtains higher spectral efficiency. A variety of numerical results reveal the cooperation can save the network power up to 11dB over direct transmission at BER of $10^{-3}$.

An Analytical Model for Deriving The Threshold Voltage Expression of A Short-gate Length SOI MESFET (Short-gate SOI MESFET의 문턱 전압 표현 식 도출을 위한 해석적 모델)

  • Kal, Jin-Ha;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, a simple analytical model for deriving the threshold voltage of a short-gate SOI MESFET is suggested. Using the iteration method, the Poisson equation in the fully depleted silicon channel and the Laplace equation in the buried oxide region are solved two-dimensionally, Obtained potential distributions in each region are expressed in terms of fifth-order of $\chi$, where $\chi$ denotes the coordinate perpendicular to the silicon channel direction. From them, the bottom channel potential is used to describe the threshold voltage in a closed-form. Simulation results show the dependencies of the threshold voltage on the various device geometry parameters and applied bias voltages.

Rapid prediction of inelastic bending moments in RC beams considering cracking

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1113-1134
    • /
    • 2016
  • A methodology using neural networks has been proposed for rapid prediction of inelastic bending moments in reinforced concrete continuous beams subjected to service load. The closed form expressions obtained from the trained neural networks take into account cracking in concrete at in-span and at near the internal supports and tension stiffening effect. The expressions predict the inelastic moments (considering the concrete cracking) from the elastic moments (neglecting the concrete cracking) at supports. Three separate neural networks are trained since these have been postulated to represent all the beams having any number of spans. The training, validating, and testing data sets for the neural networks are generated using an analytical-numerical procedure of analysis. The proposed expressions are verified for example beams of different number of spans and cross-section properties and the errors are found to be small. The proposed expressions, at minimal input data and computation effort, yield results that are close to FEM results. The expressions can be used in preliminary every day design as they enable a rapid prediction of inelastic moments and require a computational effort that is a fraction of that required for the available methods in literature.

Time-reversal Channel Capacity in Rayleigh and Ricean Environment (Rayleigh와 Ricean 채널 환경에서 동작하는 시역전 통신 채널 용량)

  • Koh, Il-Suek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.243-250
    • /
    • 2009
  • In this paper, a closed-form expression of the ergodic channel capacity for a narrow-band time-reversal communication scheme is analytically formulated. In the time-reversal communication scenario, a transmitter sends a signal and a so-called time-reversal array receives the signal. Then, the received signal is reversed in the time do main and resent to the original transmitter. Here, one transmitter and an antenna array for the time-reversal array are assumed. Since the spacing between the array elements is large, the signals received by each antenna element can be considered independent. For simplicity, the communication channel is assumed stationary, whose properties are not changed for the time-reversal process. Based on the obtained formulation, the channel capacities for the time-reversal and the conventional channels are compared.

Analysis and Utilization of the Power Delay Profile Characteristics of Dispersive Fading Channels (시간 지연을 갖는 페이딩 채널의 전력 지연 분포 특성 분석 및 활용)

  • Park, Jong-Hyun;Kim, Jae-Won;Song, Eui-Seok;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.681-688
    • /
    • 2007
  • Applying an appropriate received signal processing algorithm based on the channel characteristics is important to improve the receiver performance. Wireless channels in general exhibit various time-delay characteristics depending on their power delay profile. When the estimated channel power summation is used to determine the amount of time delay, a channel adaptive receiver structure can be implemented. In this paper, we derive a closed-form expression for the error probability of the channel classification when the estimated channel power summation is used to classify channel groups having different time delay characteristics, and present the performance gain utilizing multiple estimation results.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

MRC Diversity Analysis for Square M-QAM in Nakagkmi-m Fading Channels (m-분포 나카가미 페이딩 채널에서 정방형 M-QAM의 MRC 다이버시티 성능분석)

  • 이영환;이재윤;윤동원;조평동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1070-1076
    • /
    • 2003
  • This paper presents and analyses the exact and general closed-form expression for the average bit error probability of M-ary square quadrature amplitude modulation (QAM) for maximal ratio combining (MRC) diversity reception in frequency-nonselective Nakagami-m fading. An L-branch Maximal ratio combining diversity technique with independent or correlated fading cases is considered. Numerical results demonstrate the error performance improvement by employing with the use of MRC diversity reception. The new expressions presented here can offer a convenient way to evaluate the performance of an arbitrary square M-W square QAM with an MRC diversity combiner for various cases of practical interest.

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.

Direct kinematic method for exactly constructing influence lines of forces of statically indeterminate structures

  • Yang, Dixiong;Chen, Guohai;Du, Zongliang
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.793-807
    • /
    • 2015
  • Constructing the influence lines of forces of statically indeterminate structures is a traditional issue in structural engineering and mechanics. However, the existing kinematic method for establishing these force influence lines is an indirect or mixed approach by combining the force method with the theorem of reciprocal displacements, which is yet inconsistent with the kinematic method for statically determinate structure. This paper proposes the direct kinematic method in conjunction with the load-displacement differential relation for exactly constructing influence lines of reaction and internal forces of indeterminate structures. Firstly, through applying the principle of virtual displacement, the formula for influence lines of reaction and internal forces of indeterminate structure via direct kinematic method is derived based on the released structure. Then, a computational approach with a clear concept and unified procedure as well as wide applicability based on the load-displacement differential relation of beam is suggested to achieve conveniently the closed-form expression of force influence lines, and exactly draw them. Finally, three representative examples for constructing force influence lines of statically indeterminate beams and frame illustrate the superiority of the proposed method.