• 제목/요약/키워드: cloned mice

검색결과 100건 처리시간 0.027초

Factors Influencing the Efficiency of In Vitro Embryo Production in the Pig

  • Lin, Tao;Lee, Jae Eun;Shin, Hyun Young;Oqani, Reza K.;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • 제39권2호
    • /
    • pp.29-36
    • /
    • 2015
  • Pigs are considered an ideal source of human disease model due to their physiological similarities to humans. However, the low efficiency of in vitro embryo production (IVP) is still a major barrier in the production of pig offspring with gene manipulation. Despite ongoing advances in the associated technologies, the developmental capacity of IVP pig embryos is still lower than that of their in vivo counterparts, as well as IVP embryos of other species (e.g., cattle and mice). The efficiency of IVP can be influenced by many factors that affect various critical steps in the process. The previous relevant reviews have focused on the in vitro maturation system, in vitro culture conditions, in vitro fertilization medium, issues with polyspermy, the utilized technologies, etc. In this review, we concentrate on factors that have not been fully detailed in prior reviews, such as the oocyte morphology, oocyte recovery methods, denuding procedures, first polar body morphology and embryo quality.

초기 발생에 있어서 복제수정란의 리프로그래밍 (Reprogramming of Cloned Embryos During Early Embryogenesis)

  • Han, Yong-Mahn;Kang, Yong-Kook;Koo, Deog-Bon;Lee, Kyung-Kwang
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 2002년도 제42차 춘계학술대회
    • /
    • pp.11-17
    • /
    • 2002
  • Animal clones derived from somatic cells have been successfully produced in a variety of mammalian species such as sheep, cattle, mice, goats, pigs, cat and rabbits. However, there are still many unsolved problems in the present cloning technology. Somatic cell nuclear transfer has shown several developmental aberrancies including high rate of abortion in early gestation and increased perinatal death. These developmental failures of cloned embryos may arise from abnormal reprogramming of donor genome and/or incomplete cloning procedure. We have found that overall genomic methylation status of cloned bovine embryos is quite different from that of normal embryos in various genomic regions, suggesting that the developmental failures of cloned embryos may be due to incomplete reprogramming of donor genomic DNA. Many of the advances in understanding the molecular events for reprogramming of donor genome will more clarify the developmental defects of cloned embryos.

  • PDF

Comparative Study of Protein Profile during Development of Mouse Placenta

  • Han, Rong-Xun;Kim, Hong-Rye;Naruse, Kenji;Choi, Su-Min;Kim, Baek-Chul;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.253-260
    • /
    • 2007
  • To examine the differential protein expression pattern in the 11.5 day post-coitus (dpc) and 18.5 dpc placenta of mouse, we have used the global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. The differential protein patterns of 3 placentae at the 11.5 dpc and 18.5 dpc from nature mating mice were analyzed. Proteins within isoelectric point range of $3.0{\sim}10.0$, separately were analyzed in 2DE with 3 replications of each sample. A total of approximately 1,600 spots were detected in placental 2-D gel stained with Coomassie-blue. In the comparison of 11.5 dpc and 18.5 dpc placentae, a total of 108 spots were identified as differentially expressed proteins, of which 51 spots were up-regulated proteins such as alpha-fetoprotein, mKIAA0635 protein and transferrin, annexin A5, while 48 spots were down-regulated proteins such as Pre-B-cell colony-enhancing factor l(PBEF), aldolase 1, A isoform, while 4 spots were 11.5 dpc specific proteins such as chaperonin and Acidic ribosomal phosphoprotein P0, while 3 spots were 18.5 dpc specific proteins such as aldo-keto reductase family 1, member B7 and CAST1/ERC2 splicing variant-1. Most identified proteins in this analysis appeared to be related with catabolism, cell growth, metabolism and regulation. Our results revealed composite profiles of key proteins involved in mouse placenta during pregnancy.

Protein Expression of Mouse Uterus in Post-Implantation

  • Kim, Hong-Rye;Han, Rong-Xun;Kim, Myung-Youn;Diao, Yunfei;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.237-242
    • /
    • 2009
  • Pregnancy is a unique event in which a fetus develops in the uterus despite being genetically and immunologically different from the mother, and the underlying mechanisms remain poorly understood. To analyze the differential gene expression profiles in nonpregnant and 7 days post coitus (dpc) pregnant uterus of mice, we performed a global proteomic study by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. The uterine proteins were separated using 2-DE, Approximately 1,000 spots were detected on staining with Coomassie brilliant blue. An image analysis using Melanie III (Swiss Institute for Bioinformatics) was performed to detect variations in protein spots between pregnant and nonpregnant uterus. Twenty-one spots were identified as differentially expressed proteins, of which 10 were up-regulated proteins such as alpha-fetoprotein, chloride intracellular channel 1, transgelin, heat-shock protein beta-1, and carbonic anhydrase II, while 11 were down-regulated proteins such as X-box binding protein, glutathione S-transferase omega 1, olfactory receptor Olfr204, and metalloproteinase-disintegrin domain containing protein TECADAM. Most of the identified proteins appeared to be related with catabolism, cell growth, metabolism, regulation, cell protection, protein repair, or protection. Our results uncovered key proteins of mouse uterus involved in pregnancy.

Effects of human chorionic gonadotropin-producing peripheral blood mononuclear cells on the endometrial receptivity and implantation sites of the mouse uterus

  • Delsuz Rezaee;Mojgan Bandehpour;Bahram Kazemi;Sara Hosseini;Zeinab Dehghan;Saiyad Bastaminejad;Mohammad Salehi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권4호
    • /
    • pp.248-258
    • /
    • 2022
  • Objective: This research investigated the effects of human chorionic gonadotropin (HCG)-producing peripheral blood mononuclear cells (PBMCs) on the implantation rate and embryo attachment in mice. Methods: In this experimental study, a DNA fragment of the HCG gene was cloned into an expression vector, which was transfected into PBMCs. The concentration of the produced HCG was measured using enzyme-linked immunosorbent assay. Embryo attachment was investigated on the co-cultured endometrial cells and PBMCs in vitro. As an in vivo experiment, intrauterine administration of PBMCs was done in plaque-positive female mice. Studied mice were distributed into five groups: control, embryo implantation dysfunction (EID), EID with produced HCG, EID with PBMCs, and EID with HCG-producing PBMCs. Uterine horns were excised to characterize the number of implantation sites and pregnancy rate on day 7.5 post-coitum. During an implantation window, the mRNA expression of genes was evaluated using real-time polymerase chain reaction. Results: DNA fragments were cloned between the BamHI and EcoRI sites in the vector. About 465 pg/mL of HCG was produced in the transfected PBMCs. The attachment rate, pregnancy rate, and the number of implantation sites were substantially higher in the HCG-producing PBMCs group than in the other groups. Significantly elevated expression of the target genes was observed in the EID with HCG-producing PBMCs group. Conclusion: Alterations in gene expression following the intrauterine injection of HCG-producing PBMCs, could be considered a possible cause of increased embryo attachment rate, pregnancy rate, and the number of implantation sites.

Production of homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts

  • Lee, Sanghoon;Jung, Min Hee;Oh, Hyun Ju;Koo, Ok Jae;Park, Se Chang;Lee, Byeong Chun
    • 한국수정란이식학회지
    • /
    • 제31권3호
    • /
    • pp.179-183
    • /
    • 2016
  • Even though klotho deficiency in mice exhibits multiple aging-like phenotypes, studies using large animal models such as pigs, which have many similarities to humans, have been limited due to the absence of cell lines or animal models. The objective of this study was to generate homozygous klotho knockout porcine cell lines and cloned embryos. A CRISPR sgRNA specific for the klotho gene was designed and sgRNA (targeting exon 3 of klotho) and Cas9 RNPs were transfected into porcine fibroblasts. The transfected fibroblasts were then used for single cell colony formation and 9 single cell-derived colonies were established. In a T7 endonuclease I mutation assay, 5 colonies (#3, #4, #5, #7 and #9) were confirmed as mutated. These 5 colonies were subsequently analyzed by deep sequencing for determination of homozygous mutated colonies and 4 (#3, #4, #5 and #9) from 5 colonies contained homozygous modifications. Somatic cell nuclear transfer was performed to generate homozygous klotho knockout cloned embryos by using one homozygous mutation colony (#9); the cleavage and blastocyst formation rates were 72.0% and 8.3%, respectively. Two cloned embryos derived from a homozygous klotho knockout cell line (#9) were subjected to deep sequencing and they showed the same mutation pattern as the donor cell line. In conclusion, we produced homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts.

Relationships of Cocaine and Amphetamine Regulated Transcript with Serotonin in the Brain

  • Park, S. H.;B. S. Kwon;J. R. Chun;J. W. Jahng;Lee, H. T.;K. S. Chung
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.51-51
    • /
    • 2001
  • Cocaine and amphetamine-regulated transcript (CART) is a satiety factor that is regulated by leptin. It was reported that the mice intracerebroventricularly injected with CART showed behavioral changes resembled with the typical behavioral alterations found in the mice carrying disorders in the brain serotonergic (5-HT) system. Hence, this study was conducted to find out the relationships between CART and 5-HT. We first examined the mRNA levels of CART after the injections of para-chlorophenylalanine (pCPA, 300 mg/kg i.p., single injection or daily for three consecutive days) in the rat brains by in situ hybridization using the mouse CART cDNA probe cloned in our laboratory. Systemic administrations of pCPA, a potent inhibitor of tryptophan hydroxylase, the rate limiting enzyme of 5-HT biosynthesis, acutely depletes the brain 5-HT transporter (5-HTT) in the dorsal raphe nucleus (DRN), which reuptakes terminal 5-HT. Results indicated that the mRNA level of CART significantly decreased in the arcuate nucleus, paraventricular nucleus, and lateral hypothalamic nucleus by three days of daily injection with pCPA with no noticeable change detected 24 hrs after the single injection. The message levels of 5-HTT in DRN decreased in both single and three days of injections. Secondly, to investigate whether CART affect to 5-HT, mouse genomic CART gene, which is consist of 3 exons and 2 introns and mouse neurofilament light (NF-L) chain promoter were cloned. Then, we constructed neuron specific expression vector, which was transfected into HeLa cell using lipid-mediated transfection system. Expression of GFP and CART linked to NF-L-chain promoter in the transfected HeLa cell were detected by using fluorescent microscope and RT-PCR. These results confirmed normal expression of DNA constructs in vitro. Then, to increase brain specific expression of CART in vivo transgenic mice carrying CART gene controlled the deleted NF-L-chain promoter were generated by the DNA microinjection into pronuclei of fertilized embryos. Transgenic mice were detected by Southern blot. Further study is necessary to examine CART expression and 5-HTT in these transgenic mice. Therefore, these results suggest that there maybe a positive molecular correlation between CART and 5-HT in responding to the stimuli.

  • PDF

Immune Response of BALB/c Mice toward Putative Calcium Transporter Recombinant Protein of Trichomonas vaginalis

  • Mendoza-Oliveros, Tahali;Arana-Argaez, Victor;Alvarez-Sanchez, Leidi C.;Lara-Riegos, Julio;Alvarez-Sanchez, Maria Elizbeth;Torres-Romero, Julio C.
    • Parasites, Hosts and Diseases
    • /
    • 제57권1호
    • /
    • pp.33-38
    • /
    • 2019
  • Trichomoniasis is a common sexually transmitted infection caused by Trichomonas vaginalis, which actually does not exist a vaccine for control or prevention. Thus, the identification of new and potent immunogens in T. vaginalis, which can contribute to the development of a vaccine against this parasite, is necessary. Therefore, the aim of this work was to evaluate the potential of a recombinant Transient Receptor Potential-like channel of T. vaginalis (TvTRPV), as a promising immunogen in BALB/c mice. First, TvTRPV was cloned and expressed as a recombinant protein in Escherichia coli BL21 cells and purified by nickel affinity. Next, BALB/c mice were immunized and the antibody levels in mice serum and cytokines from the supernatant of macrophages and from co-culture systems were evaluated. Recombinant TvTRPV triggered high levels of specific total IgG in sera from the immunized mice. Also, a statistically significant increase of cytokines: $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ after stimulation with the corresponding antigens in vitro, was identified. Moreover, co-cultures using $CD4^+$ T cells from immunized mice were able to identify higher levels of IL-10 and $IFN-{\gamma}$. These results were useful to validate the immunogenicity of TvTRPV in BALB/c mice, where IL-10-$IFN-{\gamma}$-secreting cells could play a role in infection control, supporting the potential of TvTRPV as a promising target for vaccine against T. vaginalis.

Papaya Ringspot Virus Coat Protein Gene for Antigen Presentation in Escherichia coli

  • Chatchen, Supawat;Juricek, Mila;Rueda, Paloma;Kertbundit, Sunee
    • BMB Reports
    • /
    • 제39권1호
    • /
    • pp.16-21
    • /
    • 2006
  • The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.

마우스 간의 황함유 아미노산 대사에 미치는 베타인의 용량의존성 영향 (Dose-dependent Effects of Betaine on Hepatic Metabolism of Sulfur Amino Acids in Mice)

  • 김상겸
    • 약학회지
    • /
    • 제53권2호
    • /
    • pp.69-73
    • /
    • 2009
  • Acute betaine treatment induces time-dependent changes in the hepatic glutathione (GSH), cysteine and S-adenosylmethionine (SAM) levels. Our previous study demonstrated that betaine administered $1{\sim}4$ hours prior to sacrifice decreased hepatic GSH levels, but these levels were increased when measured 24 hours following the treatment. The present study was aimed to determine dose-dependent effects of betaine on hepatic metabolism of sulfur amino acid in mice. Mice were sacrificed 2.5 or 24 hours after intraperitoneal treatment with betaine at different dose levels ranging from 50 to 1000 mg/kg. The concentrations of methionine and SAM were increased by a betaine dose of 100 mg/kg, and the concentrations of GSH and cysteine were decreased by a betaine dose of 200 mg/kg at 2.5 hours. These changes were augmented with increasing doses of betaine. At 24 hours following betaine treatment, increased GSH and decreased taurine levels were observed from dose levels of 400 mg/kg. Changes in hepatic activities of cystathionine beta-synthase, gammaglutamylcysteine ligase and cysteine dioxygenase were observed from dose levels of $200{\sim}400$ mg/kg of betaine administered 24 hours prior to sacrifice.