• Title/Summary/Keyword: clinical pathway

Search Result 595, Processing Time 0.031 seconds

Ginseng and Diabetes: The Evidences from In Vitro, Animal and Human Studies

  • Yuan, Hai-Dan;Kim, Jung-Tae;Kim, Sung-Hoon;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.27-39
    • /
    • 2012
  • Panax ginseng exhibits pleiotropic beneficial effects on cardiovascular system, central nervous system, and immune system. In the last decade, numerous preclinical findings suggest ginseng as a promising therapeutic agent for diabetes prevention and treatment. The mechanism of ginseng and its active components is complex and is demonstrated to either modulate insulin production/secretion, glucose metabolism and uptake, or inflammatory pathway in both insulin-dependent and insulin-independent manners. However, human studies are remained obscure because of contradictory results. While more studies are warranted to further understand these contradictions, ginseng holds promise as a therapeutic agent for diabetes prevention and treatment. This review summarizes the evidences for the therapeutic potential of ginseng and ginsenosides from in vitro studies, animal studies and human clinical trials with a focus on diverse molecular targets including an AMP-activated protein kinase signaling pathway.

Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells

  • Jang, Yeo Jin;Won, Jong Hoon;Back, Moon Jung;Fu, Zhicheng;Jang, Ji Min;Ha, Hae Chan;Hong, SeungBeom;Chang, Minsun;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.407-413
    • /
    • 2015
  • Paraquat dichloride (N,N-dimethyl-4-4'-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and $150{\mu}M$), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.

Atypical Hemolytic Uremic Syndrome in a 13-year-old Lao Girl: A Case Report

  • Kedsatha, Philavanh;Cheong, Hae Il;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.23 no.1
    • /
    • pp.43-47
    • /
    • 2019
  • Atypical hemolytic uremic syndrome (aHUS), a rare form of thrombotic microangiopathy, is distinguished from the typical form by the absence of a preceding verotoxin-producing Escherichia coli infection. Notably, aHUS occurs in association with genetic or acquired disorders causing dysregulation of the alternative complement pathway. Patients with aHUS may show the presence of anti-complement factor H (CFH) autoantibodies. This acquired form of aHUS (antiCFH-aHUS) primarily affects children aged 9-13 years. We report a case of a 13-year-old Lao girl with clinical features of aHUS (most likely anti-CFH-aHUS). The initial presentation of the patient met the classical clinical triad of thrombotic microangiopathy (microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury) without preceding diarrheal illness. Low serum levels of complement 3 and normal levels of complement 4 indicated abnormal activation of the alternative complement pathway. Plasma infusion and high-dose corticosteroid therapy resulted in improvement of the renal function and hematological profile, although the patient subsequently died of infectious complications. This is the first case report that describes aHUS (possibly anti-CFH-aHUS) in Laos.

NGSEA: Network-Based Gene Set Enrichment Analysis for Interpreting Gene Expression Phenotypes with Functional Gene Sets

  • Han, Heonjong;Lee, Sangyoung;Lee, Insuk
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.579-588
    • /
    • 2019
  • Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.

Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation

  • Zhang, Wanying;Zou, Guiling;Li, Bin;Du, Xuefei;Sun, Zhe;Sun, Yu;Jiang, Xiaofeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1132-1141
    • /
    • 2020
  • Inflammatory bowel disease (IBD) is an increasing global burden and a predisposing factor to colorectal cancer. Although a number of treatment options are available, the side effects could be considerable. Studies on fecal microbiota transplantation (FMT) as an IBD intervention protocol require further validation as the underlying mechanisms for its attenuating effects remain unclear. This study aims to demonstrate the ameliorative role of FMT in an ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) and elucidate its relative mechanisms in a mouse model. It was shown that FMT intervention decreased disease activity index (DAI) levels and increased the body weight, colon weight and colon length of experimental animals. It also alleviated histopathological changes, reduced key cytokine expression and oxidative status in the colon. A down-regulated expression level of genes associated with NF-κB signaling pathway was also observed. The results of 16S rRNA gene sequencing showed that FMT intervention restored the gut microbiota to the pattern of the control group by increasing the relative abundance of Firmicutes and decreasing the abundances of Bacteroidetes and Proteobacteria. The relative abundances of the genera Lactobacillus, Butyricicoccus, Lachnoclostridium, Olsenella and Odoribacter were upregulated but Helicobacter, Bacteroides and Clostridium were reduced after FMT administration. Furthermore, FMT administration elevated the concentrations of SCFAs in the colon. In conclusion, FMT intervention could be suitable for UC control, but further validations via clinical trials are recommended.

Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis

  • Mo, SangJoon;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

Role of Nuclear Factor Erythroid 2-Related Factor 2 in Chronic Obstructive Pulmonary Disease

  • Ban, Woo Ho;Rhee, Chin Kook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.221-226
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation due to chronic airway inflammation and destruction of the alveolar structure from persistent exposure to oxidative stress. The body has various antioxidant mechanisms for efficiently coping with such oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) is a representative system. Dysregulation of the Nrf2-ARE pathway is responsible for the development and promotion of COPD. Furthermore, COPD severity is also closely related to this pathway. There has been a clinical impetus to use Nrf2 for diagnostic and therapeutic purposes. Therefore, in this work, we systematically reviewed the clinical significance of Nrf2 in COPD patients, and discuss the value of Nrf2 as a potential COPD biomarker.

Role of PI3K/Akt Pathway in the Activation of IκB/NF-κB Pathway in Lung Epithelial Cells (폐 상피세포에서 PI3K/Akt 경로가 IκB/NF-κB 경로의 활성화에 미치는 영향)

  • Lee, Sang-Min;Kim, Yoon Kyung;Hwang, Yoon-Ha;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.551-562
    • /
    • 2003
  • Background : NF-${\kappa}B$ is a characteristic transcriptional factor which has been shown to regulate production of acute inflammatory mediators and to be involved in the pathogenesis of many inflammatory lung diseases. There has been some evidence that PI3K/Akt pathway could activate NF-${\kappa}B$ in human cell lines. However, the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ varied depending on the cell lines used in the experiments. In this study we evaluated the effect of PI3K/Akt pathway on the activation of NF-${\kappa}B$ in human respiratory epithelial cell lines. Methods : BEAS-2B, A549 and NCI-H157 cell lines were used in this experiment. To evaluate the activation of Akt activation and I${\kappa}B$ degradation, cells were analysed by western blot assay using phospho-specific Akt Ab and $I{\kappa}B$ Ab. To block PI3K/Akt pathway, cells were pretreated with wortmannin or LY294002 and transfected with dominant negative Akt (DN-Akt). For IKK activity, immune complex kinase assay was performed. To evaluate the DNA binding affinity and transcriptional activity of NF-${\kappa}B$, electrophoretic mobility shift assay (EMSA) and luciferase assay were performed, respectively. Results : In BEAS-2B, A549 and NCI-H157 cell lines, Akt was activated by TNF-$\alpha$ and insulin. Activation of Akt by insulin did not induce $I{\kappa}B{\alpha}$ degradation. Blocking of PI3K/Akt pathway via wortmannin/LY294002 or DN-Akt did not inhibit TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or IKK activation. Inhibition of PI3K/Akt did not affect TNF-$\alpha$-induced NF-${\kappa}B$ activation. Overexpression of DN-Akt did not block TNF-$\alpha$-induced transcriptional activation of NF-${\kappa}B$, but wortmannin enhanced TNF-$\alpha$-induced in NF-${\kappa}B$ transcriptional activity. Conclusion : PI3K/Akt was not involved in TNF-$\alpha$-induced $I{\kappa}B{\alpha}$ degradation or transcriptional activity of NF-${\kappa}B$ in human respiratory epithelial cell lines.

Big Data Analytics in RNA-sequencing (RNA 시퀀싱 기법으로 생성된 빅데이터 분석)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • As next-generation sequencing has been developed and used widely, RNA-sequencing (RNA-seq) has rapidly emerged as the first choice of tools to validate global transcriptome profiling. With the significant advances in RNA-seq, various types of RNA-seq have evolved in conjunction with the progress in bioinformatic tools. On the other hand, it is difficult to interpret the complex data underlying the biological meaning without a general understanding of the types of RNA-seq and bioinformatic approaches. In this regard, this paper discusses the two main sections of RNA-seq. First, two major variants of RNA-seq are described and compared with the standard RNA-seq. This provides insights into which RNA-seq method is most appropriate for their research. Second, the most widely used RNA-seq data analyses are discussed: (1) exploratory data analysis and (2) pathway enrichment analysis. This paper introduces the most widely used exploratory data analysis for RNA-seq, such as principal component analysis, heatmap, and volcano plot, which can provide the overall trends in the dataset. The pathway enrichment analysis section introduces three generations of pathway enrichment analysis and how they generate enriched pathways with the RNA-seq dataset.

The Development of a Critical Pathway for Facial Bone Fractures and the Effect of its Clinical Implementation (안면골 골절 환자에 대한 표준진료지침 개발에 따른 환자의 인식도 증가와 만족도 개선 효과)

  • Choi, Woo Young;Park, Cheol Woo;Son, Kyung Min;Cheon, Ji Seon
    • Archives of Craniofacial Surgery
    • /
    • v.14 no.2
    • /
    • pp.89-95
    • /
    • 2013
  • Background: If patients have a better understanding about their problem and treatment, compliance and satisfaction with treatment will increase. For this purpose, simple repeated explanations regarding a patients' problem and treatment are essential. Critical pathway (CP) has a very wide range in medicine with the exception of the plastic surgery field. The authors developed a CP for facial bone fractures and implemented it clinically. The aim of this study was to evaluate the effectiveness of the CP on the degree of recognition of the problem along with patient satisfaction with the treatment process. Methods: From May 2011 to October 2011, a total of 82 patients suffering from facial bone fractures were studied. The CP for facial bone fractures was developed by plastic surgeons, residents and nurses. Subsequently, the authors investigated the degree of recognition of the disease and patient satisfaction with the treatment through the use of a questionnaire. The authors compared the score of the questionnaires before and after implementation of the clinical pathway. Results: The degree of the recognition of the problem changed from 3.1 to 4.2 (p<0.001). Further, the degree of satisfaction with the treatment process changed from 3.6 to 4.3 (p<0.05). Overall, there was a two point increase in improvement. Conclusion: Implementation of the CP for facial bone fractures was effective in improving the degree of recognition and satisfaction. The authors expect that hereafter, the CP for facial bone fractures will be implemented actively in the plastic surgery field.