• 제목/요약/키워드: clinical genomics

검색결과 363건 처리시간 0.024초

Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data

  • Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.

Leri-Weill dyschondrosteosis in a newborn presenting with respiratory failure due to severe micrognathia

  • Gang, Mi Hyeon;Lee, Jianne;Lee, Yong Wook;Shin, Ji Hye;Lim, Han Hyuk;Kim, Yoo-Mi;Chang, Mea-young
    • Journal of Genetic Medicine
    • /
    • 제17권2호
    • /
    • pp.108-111
    • /
    • 2020
  • Short stature homeobox-containing gene (SHOX) is a well-known causative gene for the short stature in Turner syndrome. The clinical manifestation of SHOX gene related disorders varies from SHOX haploinsufficiency, presenting with idiopathic short stature, disproportionate short stature, or Leri-Weill dyschondrosteosis (LWD) to recessive form of extreme dwarfism and limb deformity in Langer mesomelic dysplasia. LWD is usually diagnosed upon suspicion based on short stature and skeletal abnormalities, and it is rarely accompanied with respiratory failure in the neonatal period. Here, we report the case of a newborn infant with LWD presenting with severe micrognathia that caused respiratory distress, which was diagnosed using microarray testing. Even when the manifestation of Madelung deformity is not yet apparent, LWD should be considered as one of underlying diseases related to congenital micrognathia.

A rare, likely pathogenic GCK variant related to maturity-onset diabetes of the young type 2: A case report

  • So, Min-Kyung;Huh, Jungwon;Kim, Hae Soon
    • Journal of Genetic Medicine
    • /
    • 제18권2호
    • /
    • pp.132-136
    • /
    • 2021
  • Maturity-onset diabetes of the young (MODY) is caused by autosomal dominant pathogenic variants in one of 14 currently known monogenic genes. Characteristics of patients with MODY include early-onset clinical disease with a family history of diabetes and negative autoantibodies and may present with heterogeneous phenotypes according to the different subtypes. Here, we report a patient with early-onset diabetes who presented asymptomatic mild fasting hyperglycemia with the absence of autoantibodies. She was diagnosed with glucokinase (GCK)-MODY caused by a GCK variant, c.1289T>C (p.L430P), identified by targeted gene-panel testing, and the affected father had the same variant. We interpreted this rare missense variant as a likely pathogenic variant and then she stopped taking oral medication. This case highlights the usefulness of gene-panel testing for accurate diagnosis and appropriate management of MODY. We also note the importance of familial genetic testing and genetic counseling for the proper interpretation of MODY variants.

Draft genome of Semisulcospira libertina, a species of freshwater snail

  • Gim, Jeong-An;Baek, Kyung-Wan;Hah, Young-Sool;Choo, Ho Jin;Kim, Ji-Seok;Yoo, Jun-Il
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.32.1-32.10
    • /
    • 2021
  • Semisulcospira libertina, a species of freshwater snail, is widespread in East Asia. It is important as a food source. Additionally, it is a vector of clonorchiasis, paragonimiasis, metagonimiasis, and other parasites. Although S. libertina has ecological, commercial, and clinical importance, its whole-genome has not been reported yet. Here, we revealed the genome of S. libertina through de novo assembly. We assembled the whole-genome of S. libertina and determined its transcriptome for the first time using Illumina NovaSeq 6000 platform. According to the k-mer analysis, the genome size of S. libertina was estimated to be 3.04 Gb. Using RepeatMasker, a total of 53.68% of repeats were identified in the genome assembly. Genome data of S. libertina reported in this study will be useful for identification and conservation of S. libertina in East Asia.

Identification of a likely pathogenic variant of YY1 in a patient with developmental delay

  • Bae, Soyoung;Yang, Aram;Ahn, Ja-Hye;Kim, Jinsup;Park, Hyun Kyung
    • Journal of Genetic Medicine
    • /
    • 제18권1호
    • /
    • pp.60-63
    • /
    • 2021
  • Gabriel-de Vries syndrome, caused by the mutation of YY1, is a newly defined genetic syndrome characterized by developmental delay, facial dysmorphism, and intrauterine growth retardation. A 7-month-old girl presented developmental delay and subtle facial dysmorphism including facial asymmetry, micrognathia, and low-set ears. Whole exome sequencing identified a de novo heterozygous missense variant in the YY1 (c.1220A>G; p.His407Arg) gene. Here, we examined the clinical and genetic characteristics of an infant with a novel likely pathogenic variant of YY1. This case expands the phenotypic spectrum of Gabriel-de Vries syndrome.

Case report of cerebral creatine deficiency syndrome with novel mutation of SLC6A8 gene in a male child in Bangladesh

  • Rahman, Muhammad Mizanur;Fatema, Kanij
    • Journal of Genetic Medicine
    • /
    • 제18권1호
    • /
    • pp.44-47
    • /
    • 2021
  • Cerebral creatine deficiency syndrome (CCDS) is a disorder where a defect is present in transport of creatine in the brain. Creatine plays an essential role in the energy metabolism of the brain. This is a genetic disorder, autosomal recessive or X linked, characterized by intellectual disability, speech and language delay, epilepsy, hypotonia, etc. Until recently very few number of cases have been reported. Here we report a case of 1.5-year-old boy who had epilepsy (epileptic spasm and generalized tonic clonic seizure), intellectual disability, microcephaly, hypotonia and speech delay. His magnetic resonance imaging of brain showed cortical atrophy and electroencephalography showed burst suppression pattern. The diagnosis was confirmed by clinical exome sequencing which showed novel mutation of SLC6A8+ in exon 9, suggestive of X linked recessive CCDS. The patient was then treated with glycine, L-arginine and creatine monohydrate with multiple antiepileptic drugs.

The nature of triple-negative breast cancer classification and antitumoral strategies

  • Kim, Songmi;Kim, Dong Hee;Lee, Wooseok;Lee, Yong-Moon;Choi, Song-Yi;Han, Kyudong
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.35.1-35.7
    • /
    • 2020
  • Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.

Complete genome sequence of a methicillin-resistant Staphylococcus schleiferi strain from canine otitis externa in Korea

  • Lee, Gi Yong;Yang, Soo-Jin
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.11.1-11.7
    • /
    • 2020
  • The increase in canine skin and soft tissue infections, such as pyoderma and otitis, caused by Staphylococcus schleiferi strains, is of significant zoonotic concern. In this study, we report the first complete genome sequence for a methicillin-resistant clinical isolate of S. schleiferi (MRSS) designated as SS4, obtained from a dog with otitis externa, in Korea. The genome of SS4 strain was of 2,539,409 bp and presented high G+C content ratio (35.90%) with no plasmid. Comparative analysis of SS4 genome revealed that it is closely related to 2142-05 and 5909-02 strains isolated from the canine skin infections in the USA.

A case of mild CADASIL patient with a novel heterozygous NOTCH3 variant

  • Choi, WooChan;Hwang, Yang-Ha;Lee, Jong-Mok
    • Journal of Genetic Medicine
    • /
    • 제19권1호
    • /
    • pp.38-41
    • /
    • 2022
  • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a single-gene disease caused by mutations in the neurogenic locus notch homolog protein 3 (NOTCH3) gene. The spectrum of clinical manifestations is broad, ranging from asymptomatic to typical ischemic stroke, and mainly depends on the location of the mutations. We describe the case of a 76-year-old female without apparent neurological deficits. However, brain magnetic resonance imaging revealed confluent lesions in the white matter. Direct sequencing of the NOTCH3 gene revealed a novel pathogenic mutation, c.811T>A, which results in a mild phenotype. Therefore, this report will expand the current knowledge in regards to the mutations that can cause CADASIL.

Mitophagy stimulation as a novel strategy for the treatment of mitochondrial diseases

  • Kang-Min Lee;Jeanho Yun
    • Journal of Genetic Medicine
    • /
    • 제19권2호
    • /
    • pp.49-56
    • /
    • 2022
  • Mitophagy, the selective degradation of damaged or surplus mitochondria using core autophagy machinery, plays an essential role in maintaining cellular mitochondrial function. Impaired mitophagy is closely linked to various human diseases, including neurodegenerative diseases, cardiovascular diseases, cancers and kidney disease. Defective mitophagy induces the accumulation of damaged mitochondria and thereby results in a decline in cellular survival and tissue function. Accordingly, enhancement of mitophagy has been proposed as a novel strategy for the treatment of human diseases closely linked to mitochondrial dysfunction. Recent studies showing that the stimulation of mitophagy has a therapeutic effect on several disease models highlight the possibility of disease treatment using mitophagy. The development of mitophagy inducers with toxicity and the identification of molecular mechanisms will enable the clinical application of mitophagy-based treatments.