• Title/Summary/Keyword: clinical genomics

Search Result 363, Processing Time 0.026 seconds

Cumulus and granulosa cell biomarkers: a good predictor for successful oocyte and embryo developmental competence in human in vitro fertilization

  • Yu, Eun Jeong;Lyu, Sang Woo
    • Journal of Genetic Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The oocyte quality is of great importance in infertility as it reflects the follicle developmental potential and further affects the embryo development, clinical pregnancy outcomes. The analysis of gene expression in somatic cells is an important study to better clinical in vitro fertilization (IVF) outcomes in embryo selection reflecting the appropriate communication between the oocyte and somatic cells. Specifically, somatic cell transcriptomic technology can help assess biomarkers of oocyte and embryo ability. The present article aims to overview the basic aspect of folliculogenesis and review studies involving changes in candidate gene expression of cumulus or granulosa cell related to clinical outcomes in human IVF.

A Korean Patient with Kniest Syndrome associated with Lipomeningomyelocele

  • Min, Hye Won;Koo, Kyo Yeon;Lee, Chul Ho;Yang, Jeong Yoon;Lee, Jin-Sung
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.93-97
    • /
    • 2012
  • Kniest syndrome (OMIM #156550) is a rare autosomal dominant disorder caused by a dysfunction of type II collagen, which is encoded by the COL2A1 gene (OMIM +120140) mapped to chromosome 12q13.11. Type II collagen, a molecule found mostly in the cartilage and vitreous tissues, is essential for the normal development of bones and other connective tissues. Kniest syndrome is a type II collagenopathy that presents as skeletal abnormality associated with disproportionate dwarfism, kyphoscoliosis, enlarged joints, visual loss, hearing loss, and cleft palate. This report describes a Korean patient with Kniest syndrome who was diagnosed with typical clinical features and radiologic findings. The patient presented with disproportionately short stature and kyphoscoliosis from birth. A skeletal survey revealed fused lamina in the thoracic spine, hemivertebrae, flexion deformities in multiple joints, and plagiocephaly.

Navigating the landscape of clinical genetic testing: insights and challenges in rare disease diagnostics

  • Soo Yeon Kim
    • Childhood Kidney Diseases
    • /
    • v.28 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • With the rapid evolution of diagnostic tools, particularly next-generation sequencing, the identification of genetic diseases, predominantly those with pediatric-onset, has significantly advanced. However, this progress presents challenges that span from selecting appropriate tests to the final interpretation of results. This review examines various genetic testing methodologies, each with specific indications and characteristics, emphasizing the importance of selecting the appropriate genetic test in clinical practice, taking into account factors like detection range, cost, turnaround time, and specificity of the clinical diagnosis. Interpretation of variants has become more challenging, often requiring further validation and significant resource allocation. Laboratories primarily classify variants based on the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science guidelines, however, this process has limitations. This review underscores the critical role of clinicians in matching patient phenotypes with reported genes/variants and considering additional factors such as variable expressivity, disease pleiotropy, and incomplete penetrance. These considerations should be aligned with specific gene-disease characteristics and segregation results based on an extended pedigree. In conclusion, this review aims to enhance understanding of the complexities of clinical genetic testing, advocating for a multidisciplinary approach to ensure accurate diagnosis and effective management of rare genetic diseases.

A Short History of the Genome-Wide Association Study: Where We Were and Where We Are Going

  • Ikegawa, Shiro
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.220-225
    • /
    • 2012
  • Recent rapid advances in genetic research are ushering us into the genome sequence era, where an individual's genome information is utilized for clinical practice. The most spectacular results of the human genome study have been provided by genome-wide association studies (GWASs). This is a review of the history of GWASs as related to my work. Further efforts are necessary to make full use of its potential power to medicine.

arraylmpute: Software for Exploratory Analysis and Imputation of Missing Values for Microarray Data

  • Lee, Eun-Kyung;Yoon, Dan-Kyu;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.129-132
    • /
    • 2007
  • arraylmpute is a software for exploratory analysis of missing data and imputation of missing values in microarray data. It also provides a comparative analysis of the imputed values obtained from various imputation methods. Thus, it allows the users to choose an appropriate imputation method for microarray data. It is built on R and provides a user-friendly graphical interface. Therefore, the users can easily use arraylmpute to explore, estimate missing data, and compare imputation methods for further analysis.

New Drug Development of Myotonic Muscular Dystrophy

  • Kang, Min Sung;Shin Jin-Hong
    • Journal of Interdisciplinary Genomics
    • /
    • v.3 no.2
    • /
    • pp.25-29
    • /
    • 2021
  • Myotonic muscular dystrophy is a disease characterized by progressive muscle weakness with myotonia and multiorgan involvement. Two subtypes have been recognized; each subtype is caused by nucleotide repeat expansion. So far, there has been no cure for myotonic muscular dystrophy. In this article, we introduce ongoing clinical trials for new drugs to modify disease course by correcting genetic derangement or its downstream in myotonic dystrophy type 1.

Clinical application of prenatal chromosomal microarray

  • Chang Ahn Seol
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.43-48
    • /
    • 2022
  • A prenatal chromosomal microarray (CMA) is generally recommended when a major anomaly is suspected on prenatal ultrasonography. As it can overcome the limitations of conventional karyotyping, it is expected that the number of prenatal CMA test requests will gradually increase. However, given the specificity of prenatal diagnosis, there are practical considerations compared to postnatal testing, such as the validation of prenatal specimens, maternal cell contamination, precautions when reporting variants of uncertain significance, and the need for comprehensive genetic counseling considering secondary findings. The purpose of this article is to provide necessary information to health care providers in consideration of these issues and to provide appropriate genetic counseling to patients.

Clinical Application of Chromosomal Microarray for Germline Disorders

  • Chang Ahn Seol
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.24-28
    • /
    • 2023
  • Chromosomal microarray (CMA) is primarily recommended for detecting clinically significant copy number variants (CNVs) in the genetic diagnosis of developmental delay, intellectual disability, autism, and congenital malformations. Prenatal CMA is recommended when a fetus has major congenital malformations. The main principles of CMA can be divided into array comparative genomic hybridization and single-nucleotide polymorphism arrays. In the current CMA platforms, these two principles are combined, and detection of genetic abnormalities including CNVs and absence of heterozygosity is facilitated. In this review, I described practical assessment of CMA testing regarding to laboratory management of CMA, interpretation of CNVs, and special considerations for comprehensive genetic counseling.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells

  • Insook, Yang;Seung Yeon, Oh;Suin, Jang;Il Yong, Kim;You Me, Sung;Je Kyung, Seong
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.633-638
    • /
    • 2022
  • Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease.