• Title/Summary/Keyword: climatic variation

Search Result 177, Processing Time 0.03 seconds

Dinophyceae Fluctuations in Two Alpine Lakes of Contrasting Size During a 10-Year Fortnightly Survey

  • Trevisan, R.;Pertile, R.;Bronamonte, V.;Dazzo, F.B.;Squartini, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.754-762
    • /
    • 2012
  • Colbricon Superiore and Inferiore are two small adjacent high-mountain lakes located in the Paneveggio Natural Park (Italy) that offer the rare opportunity to study two iso-ecologic water environments differing only by area and volume in a ratio of 2:1 and 3:1, respectively. We took advantage of this setting to investigate phytoplankton dynamics, compare variability and productivity differences between the two basins, and assess size-dependent issues. The phytoplankton group of the Dinophyceae was chosen as the indicator organisms of ecological perturbation owing to their high sensitivity to environmental variations, as well as their acknowledged nature of versatile proxy to report global climatic changes. The study was conducted for over 10 years with fortnightly samplings. Results indicated that (a) the Dinophyceae communities in the smaller lake were significantly more resistant to changes exerted by the fluctuation of lakewater transparency and pH; and (b) the smaller lake sustained a consistently higher production with an average Dinophyceae density 1.73 fold higher than that of the larger lake. The coefficients of variation show that the chemical parameters in the smaller lake display higher time-related fluctuation while being spatially homogeneous and that such conditions correlate with a higher stability of the Dinophyceae assemblage. The use of this setting is also proposed as a model to test relationships between ecosystem production and physical stability.

Change of Climatic Growing Season in Korea (한반도의 기후학적 식물생육기간의 변화)

  • Jung, Myung-Pyo;Shim, Kyo-Moon;Kim, Yongseok;Choi, In-Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.192-195
    • /
    • 2015
  • BACKGROUND: The growing season (GS) has been understood as a useful indicator for climate change due to high relationship with increasing temperature. Hear this study was conducted to examine changes in the thermal GS over South Korea from 1970 to 2013 based on daily mean air temperature for assessing the temporal and spatial variability in GS. METHODS AND RESULTS: Three GS parameters (starting date, ending date, and length) were determined at 19 stations throughout South Korea. The results show that the GS has been extended by 4.2 days/decade between 1970 and 2013 on average. The growing season start (GSS) has been advanced by 2.7 days/decade and the growing season end (GSE) has been delayed by 1.4 day/decade. Spatial variation in the GS parameters in Korea are shown. The GS parameters, especially GSS, of southeastern part of Korea have been changed more than that of northwestern part of Korea. The extension of GS may be more influenced on earlier onset in spring rather than later GSE. CONCLUSION: Under climate change scenarios, the GS will be more extended due to delayed GSE as well as advanced GSS. And These are more notable in the northeastern part of Korea.

A Study on the Polarization Potential Distrbution of a Steel Disc in the Water by Specific Resistance of Corrosion Circumstances (환경의 비저항을 고려한 수중 원강판의 분극전위분포에 관한 연구)

  • 김귀식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.105-108
    • /
    • 1981
  • The oceanic effect on the climate of the southern coast of Korea was analysed based on the sea surface temperature and in order to study relationships between the fluctuation of the sea surface temperature and that of climatic elements. Meteolorogical data from 1960 to 1979 were used. In the year when difference between the air and water temperature was maximum, the air temperature in southern coast was higher than normal year. A fluctuation of the sea surface temperature plays an important influence to determine the variation of the air temperature in the coastal area. Humidity of the coastal climate depends upon the oceanic effect in summer, but not in winter. This results may be due to prevailing wind effect. The oceanic effect on the precipitation in the coastal area is not found.

  • PDF

Sea Surface Temperature Related to the Characteristic of the Coastal Climate in the Southern Part of Korea (우리나라 남부해안 기후의 특성과 해면수온과의 관계)

  • 한영호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.65-69
    • /
    • 1981
  • The oceanic effect on the climate of the southern coast of Korea was analysed based on the sea surface temperature and in order to study relationships between the fluctuation of the sea surface temperature and that of climatic elements. Meteolorogical data from 1960 to 1979 were used. In the year when difference between the air and water temperature was maximum, the air temperature in southern coast was higher than normal year. A fluctuation of the sea surface temperature plays an important influence to determine the variation of the air temperature in the coastal area. Humidity of the coastal climate depends upon the oceanic effect in summer, but not in winter. This results may be due to prevailing wind effect. The oceanic effect on the precipitation in the coastal area is not found.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Assessment of causality between climate variables and production for whole crop maize using structural equation modeling

  • Kim, Moonju;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.339-353
    • /
    • 2021
  • This study aimed to assess the causality of different climate variables on the production of whole crop maize (Zea mays L.; WCM) in the central inland region of the Korea. Furthermore, the effect of these climate variables was also determined by looking at direct and indirect pathways during the stages before and after silking. The WCM metadata (n = 640) were collected from the Rural Development Administration's reports of new variety adaptability from 1985-2011 (27 years). The climate data was collected based on year and location from the Korean Meteorology Administration's weather information system. Causality, in this study, was defined by various cause-and-effect relationships between climatic factors, such as temperature, rainfall amount, sunshine duration, wind speed and relative humidity in the seeding to silking stage and the silking to harvesting stage. All climate variables except wind speed were different before and after the silking stage, which indicates the silking occurred during the period when the Korean season changed from spring to summer. Therefore, the structure of causality was constructed by taking account of the climate variables that were divided by the silking stage. In particular, the indirect effect of rainfall through the appropriate temperature range was different before and after the silking stage. The damage caused by heat-humidity was having effect before the silking stage while the damage caused by night-heat was not affecting WCM production. There was a large variation in soil surface temperature and rainfall before and after the silking stage. Over 350 mm of rainfall affected dry matter yield (DMY) when soil surface temperatures were less than 22℃ before the silking stage. Over 900 mm of rainfall also affected DMY when soil surface temperatures were over 27℃ after the silking stage. For the longitudinal effects of soil surface temperature and rainfall amount, less than 22℃ soil surface temperature and over 300 mm of rainfall before the silking stage affected yield through over 26℃ soil surface temperature and less than 900 mm rainfall after the silking stage, respectively.

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

Impacts of Climate Change on Rice Production and Adaptation Method in Korea as Evaluated by Simulation Study (생육모의 연구에 의한 한반도에서의 기후변화에 따른 벼 생산성 및 적응기술 평가)

  • Lee, Chung-Kuen;Kim, Junwhan;Shon, Jiyoung;Yang, Woon-Ho;Yoon, Young-Hwan;Choi, Kyung-Jin;Kim, Kwang-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.207-221
    • /
    • 2012
  • Air temperature in Korea has increased by $1.5^{\circ}C$ over the last 100 years, which is nearly twice the global average rate during the same period. Moreover, it is projected that such change in temperature will continue in the 21st century. The objective of this study was to evaluate the potential impacts of future climate change on the rice production and adaptation methods in Korea. Climate data for the baseline (1971~2000) and the three future climate (2011~2040, 2041~2070, and 2071~2100) at fifty six sites in South Korea under IPCC SRES A1B scenario were used as the input to the rice crop model ORYZA2000. Six experimental schemes were carried out to evaluate the combined effects of climatic warming, $CO_2$ fertilization, and cropping season on rice production. We found that the average production in 2071~2100 would decrease by 23%, 27%, and 29% for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were fixed. In contrast, predicted yield reduction was ~0%, 6%, and 7%, for early, middle, and middle-late rice maturing type, respectively, when cropping seasons were changed. Analysis of variation suggested that climatic warming, $CO_2$ fertilization, cropping season, and rice maturing type contributed 60, 10, 12, and 2% of rice yield, respectively. In addition, regression analysis suggested 14~46 and 53~86% of variations in rice yield were explained by grain number and filled grain ratio, respectively, when cropping season was fixed. On the other hand, 46~78 and 22~53% of variations were explained respectively with changing cropping season. It was projected that sterility caused by high temperature would have no effect on rice yield. As a result, rice yield reduction in the future climate in Korea would resulted from low filled grain ratio due to high growing temperature during grain-filling period because the $CO_2$ fertilization was insufficient to negate the negative effect of climatic warming. However, adjusting cropping seasons to future climate change may alleviate the rice production reduction by minimizing negative effect of climatic warming without altering positive effect of $CO_2$ fertilization, which improves weather condition during the grain-filling period.

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Geographical Variation in Bud-burst Timing of Zelkova serrata Provenances (느티나무 산지별 개엽시기의 지리적 변이)

  • Kim, In Sik;Han, Sang Urk;Lee, Wi Young;Na, Sung Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.191-200
    • /
    • 2013
  • This study was conducted to examine the geographic variation of bud phenology of Zelkova serrata provenances. Data were collected from Gangneung, Yilmsil, Hwaseong and Jinju plantations which were parts of the 6 provenance trials established by Korea Forest Research Institute in 2009. The 16 provenances were included in these trials. The starting date of bud burst and finishing date of leaf expansion were investigated from April to May every other day. The four geographic factors and fifteen climatic factors of the test sites and provenances were considered in this study. Canonical correlation analysis was conducted to examine the major factors affecting the bud phenology between test sites and provenances. The study results suggested that the major factors affecting the timing of bud burst were the differences of extremely high temperature (March-October), annual mean temperature, mean temperature (March-October), extremely high temperature (July-August) and mean humidity (June-October) between test site and provenance. The provenances with lower mean or high temperature than those of plantation showed the earlier bud burst and leaf expansion. It showed a typical north-south or low-high temperature cline. Finally, we discussed the implication of the tree breeding program of Z. serrata based on these results.