• Title/Summary/Keyword: climatic index

Search Result 186, Processing Time 0.027 seconds

Relationship between Exposure Index and Overheating Index in Complex Terrain (복잡지형에서 사면 개방도과 계절별 과열지수 사이의 관계)

  • 정유란;황범석;서형호;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.200-207
    • /
    • 2003
  • '||'||'||'&'||'||'||'quot;Overheating index'||'||'||'&'||'||'||'quot;, the normalized difference in incident solar energy between a target surface and a level surface, is helpful in estimating the spatial variation in daily maximum temperature at the landscape scale. It can be computed as the ratio of the 4-hour cumulative solar irradiance surplus or deficit from that over a level surface to the maximum possible deviation (15 MJ $m^{-2}$ ) during the midafternoon. Ecosystem models may, for simplicity, use an empirical proxy (exposure index) variable combining slope and aspect in place of the overheating index to account for the variation of midafternoon solar irradiance. A comparative study with real-world landscape data was carried out to evaluate the performance of exposure index in replacing the overheating index. Overheating indices for summer solstice, fall equinox and winter solstice were calculated at 573,650 grid cells constituting the land surface of Donggye-Myun, Sunchang County in Korea, based on a 10-m DEM. Exposure index was also calculated for the same area and fitted for the variation of overheating index to derive a 2$^{nd}$ -order linear regression equation. The coefficient of determination ($R^2$) was 0.50 on summer solstice, 0.56 on fall equinox, and 0.44 on winter solstice, respectively. These are much lower than the theoretically calculated $R^2$ values ranging from 0.7 in summer to 0.9 in autumn. According to our study, exposure index failed to accurately predict the cumulative solar irradiance over a complex terrain, hindering its application to daily maximum temperature estimation. We suggest direct calculation of the overheating index in preference to using the exposure index.

Predicting the Potential Habitat and Risk Assessment of Amaranthus patulus using MaxEnt (Maxent를 활용한 가는털비름(Amaranthus patulus)의 잠재서식지 예측 및 위험도 평가)

  • Lee, Yong Ho;Na, Chea Sun;Hong, Sun Hea;Sohn, Soo In;Kim, Chang Suk;Lee, In Yong;Oh, Young Ju
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.672-679
    • /
    • 2018
  • This study was conducted to predict the potential distribution and risk of invasive alien plant, Amaranthus patulus, in an agricultural area of South Korea. We collected 254 presence localities of A. patulus using field survey and literature search and stimulated the potential distribution area of A. patulus using maximum entropy modeling (MaxEnt) with six climatic variables. Two different kinds of agricultural risk index, raster risk index and regional risk index, were estimated. The 'raster risk index' was calculated by multiplying the potential distribution by the field area in $1{\times}1km$ and 'regional risk index' was calculated by multiplying the potential distribution by field area proportion in the total field of South Korea. The predicted potential distribution of A. patulus was almost matched with actual presence data. The annual mean temperature had the highest contribution for distribution modeling of A. patulus. Area under curve (AUC) value of the model was 0.711. The highest regions were Gwangju for potential distribution, Jeju for 'raster risk index' and Gyeongbuk for 'regional risk index'. This different ranks among the index showed the importance about the development of various risk index for evaluating invasive plant risk.

Distribution of millipedes in relation to altitude and flora on mt. chiri (智異山의 植生과 標高에 따른 노래기類의 分布)

  • Lim, kil-young;Tae-heung kim;Joon-soo kwak
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.329-335
    • /
    • 1992
  • Bionomics of diplopodes was studid near chongyongchi in the chiri mountains from sept. 1990 to dec. 1991 by surveying 10 sample sites at 12 occasions. During this period 13 species of diplopodes from 11 genera, 8 families, and 6 orders were collected. Species were more diversed under quercus mongolica followed by quercus serrata and pinus densiflora sp. epenerchodus koreanus bifidus, and e. k. koreanus were found in all sample sites and these 6 species have been reported to be distributed throughout south korea. yamasinaium sp., riukiaria semicirculalis, parafontaria koreanus, and sicotanus eurygaster were found only under quercus mongolica community and postulated to be related to diet meanwhile other enviromental factors such as temperature, soil ph, and altitude should be taken into consideration. Species diversity index was higher at altitude 700m followed by at 900m, 1, 000m, 800m, 600m, 500m, 1, 100m, 400m, 300m, and 1, 200m in discending order likely due to the enviromental factors such as climatic and edaphic affects, disturbance by human, and degree of floral diversity. Species similarity index was highest 0.78 between altitude 500m and 600m sample sites could be grouped into 3, namely first 300m, 400m, second 500m, 600m, 700m, 1, 000m, 800m, 900m, and third 1, 100m, 1, 200m.

  • PDF

A Physioclimatic Study on the Thermal Sensation in Korea (한국의 열감분포에 관한 생리 기후학적 연구 - 신유효온도를 중심으로 -)

  • 강철성
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.2
    • /
    • pp.129-140
    • /
    • 1997
  • The purpose of this paper is to analyze thermal sensation which is measured bv human physioclimatic reactions in Korea. Human physiological reactions to temperature and relative humidity are analyzed to produce a nomogram from which average human reactions to the climatic factors can be deduced. Thermal - indices for each regular stations in both South (1961-1990) and North Korea(1973-1994) are calculated based on monthly meteorological data. A generalized annual physioclimatic maps for each Annual Cumulative Thermal Index for the 52 stations are constructed to show how men tend to feel in various areas. Resuts of this study can be applied for evaluation of thermal environment in our daily activities, and for searching relevant sports training-sites.

  • PDF

On the Vegetation Zone of Mt. Paektu (백두산의 식생대에 관하여)

  • 임양재;심재국
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_2
    • /
    • pp.501-518
    • /
    • 1998
  • Mt. Paektu(2,749.6m)m the biggest mountain in Northeast Asia, located on the border line of Korea and China is characterized as an aspite with broad gentle mountain area and rich biota. however, it seems that the study of forest vegetational feature or vegetation zones in the whole area of this mountain is not yet sufficient in spite of contribution by many investigators. in this paper thermal climatic approach was carried out for the determination of vegetation zones of the mountain with the meteorological data of four stations including Cheonjj and various vegetational data. the application of Warmth Index and/or coldness Index(Kira 1977) for the determination of forest vegetation boundary was useful also here, and their boundaries largely coincided with those of thermal indicies obtained in the Korean Peninsula(Yim and Kira, 1975), including the lapse rate of air temperature along increasing elevation. However, in the mountain the boundary of vegetation zones in not clear like those of mountains in Korea. It may be due so the topographic differences between this area and the Korean Peninsula. Besides, the broad ecotones between different vegetations in this area support the vegetation continum concept rather than the unit concept, and the limit of timber line or tree line reflects various hypothesis(Steven and fox 1991). Therefore, for the explantion of vegetation zone of this area should be considered topography or soil condition, for example, as known the hierachy of ecological units (zonobiomes, orobiomes and pedobiomes, Walter, 1973).

  • PDF

Changes in the Climate in recent 60 years and Distribution of Agroclimatic Resources in Korea (우리나라 최근(最近) 60년(年의) 기후변화(氣候變化)에 따른 농업기후자원(農業氣候資源) 분포(分布))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.160-167
    • /
    • 1994
  • Meteorological elements such as air temperature, relative humidity, rainfall, sunshine duration, and so on observed by Korea Meteorological Administration, were analyzed to estimate the climatic change and to establish countermeasures in agriculture. Climatic differences were compared between two periods, early($1931{\sim}1960$) and late($1961{\sim}1990$), by calculating climatic resource indices, coldness index and warmth index of the two periods. Annual mean air temperatures of Seoul, Taegu, and Pusan in 1910's were 10.7, 12.3, and $13.4^{\circ}C$, respectively, having increased by $1.3^{\circ}C$ in Seoul and Taegu and by $0.9^{\circ}C$ in Pusan in 1990's. Mean air temperature in the spring($March{\sim}May$) increased by $0.69^{\circ}C$, which is a higher increasing rate than in the other seasons ($0.26{\sim}0.33^{\circ}C$). Regional differences exist in annual mean air temperature between the early and late part of the 20th century with little increase in this experiment did not germinate at pH 1.0. At pH 2.0, the flowering cabbage and geranium in the middle northern area, while in the southern part about $1^{\circ}C$increase was recorded during the last period. In the late period the annual rainfall increased by 100mm, except for the western coast area and the middle northern area. The P/E ratio showed a trend of an annual increase in the late period, being higher in the summer and lower in the winter. Relative humidity showed slight differences in seasons and regions but annual values did not. Duration of sunshine decreased by about an hour in the spring. Coldness index and warmth index of the late period were higher by 3.7 and 1.0 than those of the early period, respectively.

  • PDF

Correlation between the Maize Yield and Satellite-based Vegetation Index and Agricultural Climate Factors in the Three Provinces of Northeast China (중국 동북3성에서의 옥수수 수확량과 위성기반의 식생 지수 및 농업기후요소와의 상관성 연구)

  • Park, Hye-Jin;Ahn, Joong-Bae;Jung, Myung-Pyo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.709-720
    • /
    • 2017
  • In this study, we tried to analyze the correlation between corn yield and, satellite-based vegetation index, NDVI (Normalized Difference Vegetation Index) and various climatic factors in the three provinces of Northeast China during the past 20 years (1996-2015). The corn yields in the corn cultivation area of all three provinces showed a statistically significant positive correlation with the NDVI of the harvest period. Also, these have significant negative correlation with the daily maximum temperature in August and September and the occurrence frequency of above $30^{\circ}C$ for the summer season. The correlation between the corn yields and the precipitation showed a significant positive coefficient in only Liaoning Province in July, but the correlation was not found in Jilin and Heilongjiang Provinces. In this study, the NDVI and the daily maximum temperature data are suitable to be used as predictors of corn yield in the three provinces of Northeast China provinces.

The verification about possibility of introducing Window to Floor Ratio as design index for building energy performance

  • Choi, Won-Ki;Lee, Yong-Jun;Lee, Hyun-Soo;Eom, Jae-Yong;Lee, Chung-Kook
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Purpose: Many design index that are using in planning phase have been developed. The most popular things among them are Window to Wall Ratio and Surface to Volume Ratio. However there are some limits. Window to Wall Ratio cannot consider building size and Surface to Volume Ratio cannot do Window to Wall Ratio. Accordingly, in this paper, the Window to Floor Ratio was proposed that it can be considered both building size and Window to Wall Ratio. And analyzed correlation of energy demand. Method: For the test, 16 modules with the size of $6m{\times}6m{\times}4m$ were used to make 35 models with the same volume. The simulation was conducted to 945 cases using the window-to-wall ratio of 30, 50 and 70 % in three areas such as Seoul, Gwangju and Jeju and three kinds of windows. And IES_VE was used. Result: The findings above show that the Window to Floor Ratio that can be considered both building size and Window area have to become as design index. It was found out that design criteria with SHGC is necessary, not with the thermal performance (U-value). It is needed to additional analysis about residential building and the effect of 24-hours heating and cooling condition. It plans to carry out research to establish design indicators for climatic conditions in the country and building applications.

Analysis for the Regional Characteristic of Climatic Aridity Condition in May (5월 기후 건조현상의 지역별 특성 분석)

  • Rim, Chang-Soo;Kim, Seong-Yeop
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.613-627
    • /
    • 2013
  • In this study, to understand the May aridity condition of each region for the year of the worst drought on record in each duration (1-, 3-, 6-, 12-, 24 months), monthly climate data recorded from 1973 to 2006 at 53 climatological stations in South Korea were used to estimate the FAO Penman-Monteith reference potential evapotranspiration (RET). Monthly precipitation and RET were used to estimate P/RET as aridity index and variation index (VI) of P/RET, and these indexes are compared with SPI (Standard Precipitation Index). Fifty three climatological stations were grouped into 20 regions, so that May aridity conditions of 20 regions were studied. Furthermore, regional trend of May aridity index was studied by applying Mann-Kendall trend analysis, Spearman rank test, and Sen's slope estimator. The study results show that variation index (VI) of P/RET and SPI have close correlation. Throughout the country, as the duration is shorter, May aridity was more severe. In case of 3-month and 6-month duration, most of region show significant or non-significant decreasing trend of aridity index. However, no region show significant decreasing trend of aridity index in case of 12-month and 24-month duration.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF