• Title/Summary/Keyword: climatic conditions

Search Result 539, Processing Time 0.026 seconds

Distribution of Ectomycorrhizal Mushroom According to Altitude in NaeJangsan National Park (내장산국립공원의 고도에 따른 외생균근성 버섯 분포)

  • Jang, Seog-Ki
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.63-72
    • /
    • 2006
  • This study was conducted to investigate the diversity of ectomycorrhizal mushroom by surveying sites from June 2004 to October 2005. The obtained results from investigation were as follows. The total of 5 classes 16 orders 63 families 149 genera and 358 species including saprophytic and ectomycorrhizal fungi was investigated. A total of 17 families 36 genera 152 species (1,285ea.) of ectomycorrhizal mushroom was investigated. The mushrooms are classified into 9 families 27 genera and 136 species in Agaricales, 5 families 6 genera and 12 species in Aphyllophorales and 3 families 3 genera and 4 species in Gasteromycetes. Dorminant species were Russulaceae (35 species) followed by Boletaceae (34 species), Amanitaceae(22 species) and Cortinariaceae (21 species). The mushroom occurrence of octomycorrhizal fungi was closely related to climatic conditions such as high air temperature and lots of rainfall from July to September. The environment factors which have a favorable influence of mushroom occurrence were soil pH, available $P_{2}O_{5}$ of soil and rainfall and air temperature of climatic environment.

Review of Disease Incidence of Major Crops in 2002 (2002년 농작물 병해 발생개황)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2003
  • The year of 2002 was very unusual in climatic condition. Warm winter weather, high temperature and drought in March and April, little precipitation in June and early and mid-July and, nearly continuous rain-falls from late July to whole period of August accompanied with low temperature and insufficient sunshine in 2002 resulted in unfavorable conditions for plant growth in one way or another, In relation to the unusual weather, in general, diseases associated with low temperature, poor radiation and much rainfall occurred severely in this year, In rice, incidence of bacterial grain rot, and false smut increased sharply, whereas other major diseases including blast occurred mildly due mainly to the reduced application of nitrogen fertilizer, In vegetables, potato and sweet potato, and fruit trees, incidence of diseases was largely dependent on climatic condition of growth period in particular crops. However, diseases favored low temperature and much rainfall, such as Phytophthora disease increased markedly compared to those of normal years, while anthracnose and soft rot tended to decrease significantly.

The Impact of Comfort of built Environment and Microclimate on Outdoor Activities in Urban Space (건조환경의 쾌적성과 미기후가 도시공간의 외부활동 지속에 미치는 영향 분석)

  • Jeong, Yunnam;Lee, Gunwon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.565-575
    • /
    • 2019
  • This study aimed to examine the influence of physical environment, microclimate, and comfort on sustaining outdoor activities. This study has identified the main factors that influence sustaining outdoor activities as physical environment, comfort in the physical environment, microclimate and microclimate comfort. For analysis, the study conducted the investigation on pedestrian walkability during spring, summer and winter of the year 2017. The microclimate levels were also recorded at the same time. The method of logit regression analysis was used to analyze these outcomes. The result showed that the comfort and safety of the physical environment as well as the ideal climatic conditions, in terms of temperature, wind level, and solar insolation, were related to sustaining outdoor activities. Also, walking and shopping in the physical and climatic environment were the factors that were found to be more influenced than the act of remaining in a place and forming conversations.

Drivers of Crop Productivity and Resource Use Efficiencies in Apple between Western and Eastern States in the US

  • Kim, Soo-Hyung
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2015.08a
    • /
    • pp.18-28
    • /
    • 2015
  • Apple is cultivated under various climatic conditions in many parts of the world. Better understanding of how climate, genotype, soil, and management factors interact to determine crop productivity will improve our ability to optimize crop selection, management strategies, and resource use efficiencies. We developed and applied a physiology-based apple canopy model to evaluate how climatic factors and crop phenotypes interact to determine biomass accumulation, radiation use efficiency (RUE), and water use efficiency (WUE) at multiple production sites between western and eastern states of the US including WA, CA, NY, WV, and PA. Our results indicate that solar radiation is a dominant factor limiting biomass production in the eastern states while VPD is the primary factor governing crop water use across eastern and western states during the peak growing season. Crop RUE and WUE were strongly correlated in the western states but not in the eastern states while VPD showed highly negative correlation with both RUE and WUE across all locations. The RUE improved with increasing fraction of diffuse radiation ($f_{df}$) and the $RUE-f_{df}$ relationships revealed distinctive responses between western and eastern states. Overall, the eastern locations exhibited slightly higher RUE and WUE than the western locations. However, overall productivity and total water use were greater in the western states. A clear decline of productivity with increasing temperature and afternoon VPD past an optimum was predicted in the western locations but this pattern was less clear in the eastern locations. We also discuss potential phenotypes with specific physiological and morphological traits that are differentially suitable for western and eastern locations. Our results provide plausible, spatially explicit explanations and insights to disentangle the complex relationships between crop productivity, resource use efficiencies, phenotype, and climate drivers in apple grown in the US.

  • PDF

The Occurrence and Distribution of Adverse Climatic Conditions Focussed on Low Temperature and Drought during Rice Transplanting Period (수도재배기간중(水稻栽培期間中)의 저온(低溫) 및 이앙기(移秧期) 한발출현유형(旱魃出現類型)과 분포(分布))

  • Lee, Yang-Soo;Jung, Yeong-Sang;Ryu, In-Soo;Han, Won-Shig;Kim, Byung-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.203-209
    • /
    • 1983
  • The occurrence and regional distribution of low temperature and drought during rice cropping period in Korea were studied to characterize the climatic impacts. The long term changes in rice yield, air temperature and precipitation were analyzed, and regional distributions were characterized. The significant climatic impacts on rice yield were heavy rain or flood, drought and low temperature. Since 1910, the occurrence of drought was 29 times, that of flood was 24 times and that of low temperature was 9 times; however, the drought and flood damages were decreased due to expansion of irrigation system since 1970 but low temperature damage was remarkedly increased. The long term changes in air temperature since 1908 in Suweon showed that the 5-year moving average from July to August decreased while that from May to June increased. The occurrence probability of the long term and early term low temperature types were the greatest in Korea and were in order of Suweon, Daegu and Kwangiu. The long term changes in 10-year moving average precipitation from April to June showed a 15 year cycle and recent years were in low precipitation period. The drought frequencies were the highest in Daegu and Pohang area. According to the precipitation from April to June and resevtoir storage at late June, the severest dry area were the Youngnam inland and the southwest coastal area.

  • PDF

Relationship between Climatic Factors and Occurrence of Ectomycorrhizal Fungi in Byeonsanbando National Park (변산반도 국립공원의 외생균근성 버섯 발생과 기후 요인 과의 관계)

  • Kim, Sang-Wook;Jang, Seog-Ki
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.220-232
    • /
    • 2016
  • A survey of ectomycorrhizal fungi was performed during 2009-2011 and 2015 in Byeonsanbando National Park. A total of 3,624 individuals were collected, which belonged one division, 1 class, 5 orders, 13 families, 33 genera, 131 species. The majority of the fruiting bodies belonged to orders Agaricales, Russulales, and Boletales, whereas a minority belonged to orders Cantharellales and Thelephorale. In Agaricales, there were 6 families, 9 genera, 49 species, and 1,343 individuals; in Russulales, 1 family, 2 genera, 35 species, and 854 individuals; in Boletales, 4 families, 19 genera, 40 species, and 805 individuals; in Cantharellales, 1 family, 2 genera, 5 species, and 609 individuals; and in Thelephorale, 1 family, 1 genus, 2 species, and 13 individuals. The most frequently observed families were Russulaceae (854 individuals representing 35 species), Boletaceae (652 individuals representing 34 species), and Amanitaceae (754 individuals representing 25 species). The greatest numbers of overall and dominant species and individual fruiting bodies were observed in July. Most species and individuals were observed at altitudes of 1~99 m, and population sizes dropped significantly at altitudes of 300 m and higher. Apparently, the highest diversity of species and individuals occurred at climatic conditions with a mean temperature of $23.0{\sim}25.9^{\circ}C$, maximum temperature of $28.0{\sim}29.9^{\circ}C$, minimum temperature of $21.0{\sim}22.9^{\circ}C$, relative humidity of 77.0~79.9%, and rainfall of 300 mm or more.

Climatic Yield Potential Changes Under Climate Change over Korean Peninsula Using 1-km High Resolution SSP-RCP Scenarios (고해상도(1km) SSP-RCP시나리오 기반 한반도의 벼 기후생산력지수 변화 전망)

  • Sera Jo;Yong-Seok Kim;Jina Hur;Joonlee Lee;Eung-Sup Kim;Kyo-Moon Shim;Mingu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.284-301
    • /
    • 2023
  • The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation f or CYP instead of sunshine duration which is relatively uncommon in the climate prediction f ield. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benef its of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in f uture climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. The f indings of this study on changes in rice productivity and uncertainties in temperature and solar radiation during the 21st century, based on climate change scenarios, hold value as f undamental information for climate change adaptation efforts.

Importance and production of chilli pepper; heat tolerance and efficient nutrient use under climate change conditions

  • Khaitov, Botir;Umurzokov, Mirjalol;Cho, Kwang-Min;Lee, Ye-Jin;Park, Kee Woong;Sung, JwaKyung
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.769-779
    • /
    • 2019
  • Chilli peppers are predominantly cultivated in open field systems under abiotic and biotic stress conditions. Abiotic and biotic factors have a considerable effect on plant performance, fruit quantity, and quality. Chilli peppers grow well in a tropical climate due to their adaptation to warm and humid regions with temperatures ranging from 18 to 30℃. Nowadays, chilli peppers are cultivated all around the world under different climatic conditions, and their production is gradually expanding. Expected climate changes will likely cause huge and complex ecological consequences; high temperature, heavy rainfall, and drought have adverse effects on the vegetative and generative development of all agricultural crops including chilli peppers. To gain better insight into the effect of climate change, the growth, photosynthetic traits, morphological and physiological characteristics, yield, and fruit parameters of chilli peppers need to be studied under simulated climate change conditions. Moreover, it is important to develop alternative agrotechnologies to maintain the sustainability of pepper production. There are many conceivable ideas and concepts to sustain crop production under the extreme conditions of future climate change scenarios. Therefore, this review provides an overview of the adverse impacts of climate change and discusses how to find the best solutions to obtain a stable chilli pepper yield.

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

A Study on Performance Analysis of 3kW Grid-Connected PV Systems (3kW급 계통연계형 태양광발전시스템의 성능특성 비교분석에 관한 연구)

  • So, Jung-Hun;Choi, Ju-Yeop;Yu, Gwon-Jong;Jung, Young-Seok;Choi, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • 3kW grid connected PV(photovoltaic) systems have been constructed for evaluating and analyzing performance of PV system at FDTC(field demonstration test center) in Korea, PV systems installed in FDTC have been operating and monitored since November 2002. As climatic and irradiation conditions have been varied through long-term field test, data acquisition system has been constructed for measuring performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV systems has been evaluated and analyzed for component perspective(PV array and power conditioning system) and global perspective(system efficiency, capacity factor, and electrical power energy) by field test. By the results, it is very important to develop optimal design technology of grid connected PV system.