• Title/Summary/Keyword: climate-change

Search Result 6,459, Processing Time 0.032 seconds

Future Projection of Climatic Zone Shifts over Korean Peninsula under the SSP-RCP Scenario using Trewartha's Climate Classification (트레와다 기후구분을 이용한 SSP-RCP 기반 미래 한반도 기후대 변화 전망)

  • Jina Hur;Sera Jo;Yong-Seok Kim;Eung-Sup Kim;Kyo-Moon Shim;Min-Gu Kang;Seung-Gil Hong;Hojung Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.3
    • /
    • pp.175-190
    • /
    • 2024
  • In order to project changes in climate zones across the Korean Peninsula, the Trewartha's climate classification was applied to the SSP-RCP scenario data with a 1km resolution produced by the National Institute of Agricultural Sciences of the Rural Development Administration. Currently, most of the Korean Peninsula (92.3%) belongs to the temperate climate type (D), whereas only some areas (4.9%), such as Jeju Island, belongs to the subtropical climate type (C). According to SSP-RCP scenarios, the temperature is expected to gradually increase due to the influence of global warming during the 21st century, and the subtropical climate type is expected to expand to 14.1 to 48.6% of the total area of the Korean Peninsula in the far future. On the other hand, the temperate zone, which is currently most dominant on the Korean Peninsula, is expected to shrink by 85.8 to 51.4% in the late 21st century. If carbon dioxide emissions continue at the current rate, the entire Korean Peninsula will likely be dominated by subtropical and temperate regions in the distant future. In particular, the subtropical climate type is expected to dominate most of South Korea in the high-carbon scenario, except for highlands.

Impact of Climate Change on Paddy Water Storage During Storm Periods (기후변화에 따른 홍수기 논의 저류능 변화 분석)

  • Park, Geun-Ae;Park, Jong-Yoon;Shin, Hyung-Jin;Park, Min-Ji;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.27-37
    • /
    • 2010
  • The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.

Applications of Sugarcane by-products to mitigate climate change in Ethiopia

  • Habte, Lulit;Mulatu, Dure;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.36-40
    • /
    • 2018
  • Climate change is one of the major issues in both the developed and developing world. Greenhouse gas (GHG) emission is one of the implications for climate change. It is increasing rapidly. Although the emission is much less when compared to the rest of the world, Ethiopia has also faced this global issue. The major source for GHG emission in Ethiopia is agriculture. Therefore, the agriculture sector has to be given more attention in Ethiopia. To overcome the problem, Climate-Resilient Green Economy (CRGE) strategy has been initiated. One way of executing this target is to create a sustainable and environmentally friendly pathway to use agricultural byproducts. Sugarcane is one of the major plants in Ethiopia. Its byproducts are bagasse, molasses, and press mud. Since it is a waste product, it is economical and creates a sustainable and green environment by reducing GHG emissions. Sugarcane byproducts have versatile applications like as fuel, as cement replacing material, as a mitigation for expansive soils, as biosorbent for the treatment of water and wastewater and also as a wood material. However, Ethiopia has not used this byproduct massively as it is readily available. This paper reviews the possible applications of sugarcane byproducts to mitigate climate change.

Estimation of Paddy Rice Evapotranspiration Considering Climate Change Using LARS-WG (LARS-WG를 이용한 기후변화에 따른 논벼 증발산량 산정)

  • Hong, Eun-Mi;Choi, Jin-Yong;Lee, Sang-Hyun;Yoo, Seung-Hwan;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.25-35
    • /
    • 2009
  • Climate change due to global warming possibly effects the agricultural water use in terms of evapotranspiration. Thus, to estimate rice evapotranspiration under the climate change, future climate data including precipitation, minimum and maximum temperatures for 90 years ($2011{\sim}2100$), were forecasted using LARS-WG. Observed 30 years ($1971{\sim}2000$) climate data and climate change scenario based on SRES A2 were prepared to operate the LARS-WG model. Using these data and FAO Blaney-Criddle method, reference evapotranspiration and rice evapotranspiration were estimated for 9 different regions in South Korea and rice evapotranspiration of 10 year return period was estimated using frequency analysis. As the results of this study, rice evapotranspiration of 10 year return period increased 1.56%, 5.99% and 10.68% for each 30 years during $2011{\sim}2100$ (2025s; $2011{\sim}2040$, 2055s; $2041{\sim}2070$, 2085s; $2071{\sim}2100$) demonstrating that the increased temperature from the climate change increases the consumptive use of crops and agricultural water use.

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Precipitation-Streamflow Elasticity analysis of Nakdong River Based on RCP 4.5 Climate Change Scenario (RCP 4.5 기후변화 시나리오 기반의 낙동강 유역의 강우-유출 탄성도 분석)

  • Jang, Young-su;Park, Jae-Rock;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.605-612
    • /
    • 2017
  • Climate change affects the natural ecosystem and human socioeconomic activities by acting on various constituents such as the atmospheric, oceanic, biological, and land constituents of the climate. Predicting the impacts of ongoing climate change will be an important factor in adapting to the climate of the future. In this study, precipitation-streamflow elasticity analysis of the Nakdong River area was conducted using the RCP 4.5 scenario developed by the IPCC (Intergovernmental Panel on Climate Change). Precipitation and streamflow in the Nakdong River area was analyzed using monthly, seasonal, and yearly data. Results found that the climate would become very humid climate by 2100. Results of this study can be applied to adaptation of climate change, management of water resources and efficient utilization of hydraulic structures.

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.

Research Trends in Agenda-setting for Climate Change Adaptation Policy in the Public Health Sector in Korea

  • Chae, Su-Mi;Kim, Daeeun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.1
    • /
    • pp.3-14
    • /
    • 2020
  • Many studies have been conducted to assess the health effects of climate change in Korea. However, there has been a lack of consideration regarding how the results of these studies can be applied to relevant policies. The current study aims to examine research trends at the agenda-setting stage and to review future ways in which health-related adaptation to climate change can be addressed within national public health policy. A systematic review of previous studies of the health effects of climate change in Korea was conducted. Many studies have evaluated the effect of ambient temperature on health. A large number of studies have examined the effects on deaths and cardio-cerebrovascular diseases, but a limitation of these studies is that it is difficult to apply their findings to climate change adaptation policy in the health sector. Many infectious disease studies were also identified, but these mainly focused on malaria. Regarding climate change-related factors other than ambient temperature, studies of the health effects of these factors (with the exception of air pollution) are limited. In Korea, it can be concluded that studies conducted as part of the agenda-setting stage are insufficient, both because studies on the health effects of climate change have not ventured beyond defining the problem and because health adaptation to climate change has not been set as an important agenda item. In the future, the sharing and development of relevant databases is necessary. In addition, the priority of agenda items should be determined as part of a government initiative.

The Climate Change and Zoonosis (Zoonotic Disease Prevention and Control) (기후변화와 인수공통전염병 관리)

  • Jung, Suk-Chan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.228-239
    • /
    • 2009
  • The observations on climate change show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. The effects of climate change are likely to include more variable weather, heat waves, increased mean temperature, rains, flooding and droughts. The threat of climate change and global warming on human and animal health is now recognized as a global issue. This presentation is described an overview of the latest scientific knowledge on the impact of climate change on zoonotic diseases. Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as West Nile fever, Rift Valley fever, Japanese encephalitis, bluetongue, malaria and visceral leishmaniasis, and other diarrheal diseases. The distribution and prevalence of vector-borne diseases may be the most significant effect of climate change. The impact of climate change on the emergence and re-emergence of animal diseases has been confirmed by a majority of countries. Emerging zoonotic diseases are increasingly recognized as a global and regional issue with potential serious human health and economic impacts and their current upward trends are likely to continue. Coordinated international responses are therefore essential across veterinary and human health sectors, regions and countries to control and prevent emerging zoonoses. A new early warning and alert systems is developing and introducing for enhancing surveillance and response to zoonotic diseases. And international networks that include public health, research, medical and veterinary laboratories working with zoonotic pathogens should be established and strengthened. Facing this challenging future, the long-term strategies for zoonotic diseases that may be affected by climate change is need for better prevention and control measures in susceptible livestock, wildlife and vectors in Korea. In conclusion, strengthening global, regional and national early warning systems is extremely important, as are coordinated research programmes and subsequent prevention and control measures, and need for the global surveillance network essential for early detection of zoonotic diseases.

  • PDF