• Title/Summary/Keyword: climate system

Search Result 2,577, Processing Time 0.024 seconds

Spatial Planning of Climate Adaptation Zone to Promote Climate Change Adaptation for Endangered Species (생물다양성 보전을 위한 기후적응지역 설정 연구 -삵의 서식지를 중심으로-)

  • Lee, Dongkun;Baek, Gyounghye;Park, Chan;Kim, Hogul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.111-117
    • /
    • 2011
  • This study attempts to facilitate climate change adaptation in conservation area by spatial planning of climate adaptation zone for endangered species. Spatial area is South Korea and select leopard cat (Prionailurus bengalensis) as a target species of this study. In order to specify the climate adaptation zone, firstly, Maximum entropy method (Maxent) was used to identify suitable habitat, and then core habitat was selected for leopard cat. Secondly, land use resistance index was evaluated and least cost distance was analyzed for target species. In this step we choose dispersal capacity of leopard cat to reflect species ecological characteristic. Finally, climate adaptation zone is described and adaptation measures are suggested. The presented approach could be generalized for application into conservation planning and restoration process. Furthermore, spatial planning of climate adaptation zone could increase heterogeneity of habitat and improve adaptive capacity of species and habitat itself.

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

Requirement Analysis of a System to Predict Crop Yield under Climate Change (기후변화에 따른 작물의 수량 예측을 위한 시스템 요구도 분석)

  • Kim, Junhwan;Lee, Chung Kuen;Kim, Hyunae;Lee, Byun Woo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Climate change caused by elevated greenhouse gases would affect crop production through different pathways in agricultural ecosystems. Because an agricultural ecosystem has complex interactions between societal and economical environment as well as organisms, climate, and soil, adaptation measures in response to climate change on a specific sector could cause undesirable impacts on other sectors inadvertently. An integrated system, which links individual models for components of agricultural ecosystems, would allow to take into account complex interactions existing in a given agricultural ecosystem under climate change and to derive proper adaptation measures in order to improve crop productivity. Most of models for agricultural ecosystems have been used in a separate sector, e.g., prediction of water resources or crop growth. Few of those models have been desiged to be connected to other models as a module of an integrated system. Threfore, it would be crucial to redesign and to refine individual models that have been used for simulation of individual sectors. To improve models for each sector in terms of accuracy and algorithm, it would also be needed to obtain crop growth data through construction of super-sites and satellite sites for long-term monitoring of agricultural ecosystems. It would be advantageous to design a model in a sector from abstraction and inheritance of a simple model, which would facilitate development of modules compatible to the integrated prediction system. Because agricultural production is influenced by social and economical sectors considerably, construction of an integreated system that simulates agricultural production as well as economical activities including trade and demand is merited for prediction of crop production under climate change.

UNDP's Adaptation Policy Framework for Climate Change (국제연합개발계획의 기후변화 적응 정책 체계 소개)

  • Shm, Im-Chul;Lee, Eun-Jeong;Kwon, Won-Tae;Lim, Jaekyu
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2005
  • United Nations Development Programme (UNDP) introduced the Adaptation Policy Framework (APF) to support the developing countries in order to help to make adaptation policy and strategy to climate change. This study provides the summary of the APF and will help for preparing policy regarding the impact of climate change and its adaptation. APF consists of five basic and two cross-cutting steps. Five basic steps are made of (a) defining project scope and design, (b) assessing current vulnerability and adaptation, (c) assessing future climate-related risks, (d) developing an adaptation strategy, and (e) continuing the adaptation process. Cross-cutting steps consist of engaging stakeholder and enhancing adaptive capacity. The project scope and design process includes four major tasks: scope the project and define its objectives, establish the project team, review and synthesize existing information on vulnerability and adaptation, and design the APF project. The main purpose of assessing current vulnerability and adaptation is to understand the characteristics of current climate-related vulnerability in priority systems and the scope of adaptive responses. Future climate-related risks are assessed in order to characterize future climate-related risks, so that adaptation policies and measures can be designed to reduce the system's exposure to future climate hazard. In developing an adaptation strategy, all of the preceding APF-related work is synthesized into a well-considered strategy that can direct real adaptation action. Continuing the adaptation process is in order to implement and sustain the APF-strategy, polices, and measure. The purpose of involvement of stakeholders is to communicate between individuals and groups about projects. Finally, enhancing adaptive capacity provides guidance on how adaptive capacity can be assessed and enhanced.

Predictability of the Seasonal Simulation by the METRI 3-month Prediction System (기상연구소 3개월 예측시스템의 예측성 평가)

  • Byun, Young-Hwa;Song, Jee-Hye;Park, Suhee;Lim, Han-Chul
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.27-44
    • /
    • 2007
  • The purpose of this study is to investigate predictability of the seasonal simulation by the METRI (Meteorological Research Institute) AGCM (Atmospheric General Circulation Model), which is a long-term prediction model for the METRI 3-month prediction system. We examine the performance skill of climate simulation and predictability by the analysis of variance of the METRI AGCM, focusing on the precipitation, 850 hPa temperature, and 500 hPa geopotential height. According to the result, the METRI AGCM shows systematic errors with seasonal march, and represents large errors over the equatorial region, compared to the observation. Also, the response of the METRI AGCM by the variation of the sea surface temperature is obvious for the wintertime and springtime. However, the METRI AGCM does not show the significant ENSO-related signal in autumn. In case of prediction over the east Asian region, errors between the prediction results and the observation are not quite large with the lead-time. However, in the predictability assessment using the analysis of variance method, longer lead-time makes the prediction better, and the predictability becomes better in the springtime.

Climate change effect on storm drainage networks by storm water management model

  • Hassan, Waqed Hammed;Nile, Basim Khalil;Al-Masody, Batul Abdullah
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.393-400
    • /
    • 2017
  • One of the big problems facing municipalities is the management and control of urban flooding where urban drainage systems are under growing pressure due to increases in urbanization, population and changes in the climate. Urban flooding causes environmental and infrastructure damage, especially to roads, this damage increasing maintenance costs. The aim of the present study is to develop a decision support tool to identify the performance of storm networks to address future risks associated with climate change in the Middle East region and specifically, illegal sewer connections in the storm networks of Karbala city, Iraq. The storm water management model has been used to simulate Karbala's storm drainage network using continuous hourly rainfall intensity data from 2008 to 2016. The results indicate that the system is sufficient as designed before consideration of extra sewage due to an illegal sewer connection. Due to climate changes in recent years, rainfall intensity has increased reaching 33.54 mm/h, this change led to flooding in 47% of manholes. Illegal sewage will increase flooding in the storm system at this rainfall intensity from between 39% to 52%.

Implementation Methods for Climate Change Impact Assessment (기후변화영향평가제도 시행 방안)

  • Lee, Youngsoo;Lee, Seunghyun;Choi, Sangki
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2018
  • In order to establish mainstreaming of climate change adaptation in policy, plan, program or project, we set up three kinds of implementation methods. The first is preparation of new law(tentatively called "Act on Climate Change Response") and independent implementation, the second is preparation of new law and two kinds of implementation in existing Environmental Impact Assessment system, and the third is integrated assessment in Environmental Impact Assessment system without new legal base. And we analyzed merits and demerits of suggested schemes, and specific contents of each method. Furthermore, we suggested overview of contents of new law and revised Environmental Impact Assessment law and related regulations.

Projected Climate Change Impact on Surface Water Temperature in Korea (기후변화에 따른 지표수의 수온 영향평가)

  • Ahn, Jong Ho;Han, Dae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Global human activities associated with the use of fossil fuels have aggravated climate change, increasing air temperature. Consequently, climate change has the potential to alter surface water temperature with significant impacts on biogeochemical cycling and ecosystems in natural water body. In this study, we examined temporal trends on historical records of surface water temperature, and investigated the air temperature/water temperature relationship and the potential water temperature change from an air temperature scenario developed with regional climate model. Although the temporal trends of water temperature are highly variable site-by-site, surface water temperature was highly dependent on air temperature, and has increased significantly in some sub-watersheds over the last two decades. The results presented here demonstrate that water temperature changes are expected to be slightly higher in river system than reservoir systems and more significant during winter than summer for both river and reservoir system. Projected change of surface water temperature will likely increase $1.06^{\circ}C$ for rivers and $0.95^{\circ}C$ for reservoirs during the period 2008 to 2050. Given the potential climatic changes, every $1^{\circ}C$ increase in water temperature could cause dissolved oxygen levels to fall every 0.206 ppm.

Stochastic Behavior of Plant Water Stress Index and the Impact of Climate Change (식생 물 부족 지수의 추계학적 거동과 기후변화가 그에 미치는 영향)

  • Han, Suhee;Yoo, Gayoung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 2009
  • In this study, a dynamic modeling scheme is presented to describe the probabilistic structure of soil water and plant water stress index under stochastic precipitation conditions. The proposed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress index is investigated under a climate change scenario. The simulation results of soil water confirm that the proposed soil water model can properly reproduce the observations and show that the soil water behaves with consistent cycle based on the precipitation pattern. The simulation results of plant water stress index show two different PDF patterns according to the precipitation. The simple impact assessment of climate change to soil water and plant water stress is discussed with Korean Meteorological Administration regional climate model.

Clustering of extreme winds in the mixed climate of South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.S.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.87-109
    • /
    • 2012
  • A substantial part of South Africa is subject to more than one strong wind source. The effect of that on extreme winds is that higher quantiles are usually estimated with a mixed strong wind climate estimation method, compared to the traditional Gumbel approach based on a single population. The differences in the estimated quantiles between the two methods depend on the values of the Gumbel distribution parameters for the different strong wind mechanisms involved. Cluster analysis of the distribution parameters provides a characterization of the effect of the relative differences in their values, and therefore the dominance of the different strong wind mechanisms. For gusts, cold fronts tend to dominate over the coastal and high-lying areas, while other mechanisms, especially thunderstorms, are dominant over the lower-lying areas in the interior. For the hourly mean wind speeds cold fronts are dominant in the south-west, south and east of the country. On the West Coast the ridging of the Atlantic Ocean high-pressure system dominate in the south, while the presence of a deep trough or coastal low pressure system is the main strong wind mechanism in the north. In the central interior cold fronts tend to share their influence almost equally with other synoptic-scale mechanisms.