• Title/Summary/Keyword: climate simulation

Search Result 780, Processing Time 0.024 seconds

Influences of Urban Trees on the Control of the Temperature (도시의 수목이 기온의 조절에 미치는 영향)

  • 김수봉;김해동
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

Effects of climate change and reduction method on water quality in Cheongmicheon watershed (기후 변화에 따른 청미천 유역의 수질 변화 및 저감 대책에 관한 연구)

  • Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.585-597
    • /
    • 2018
  • This study aims to investigate the variation of water quality and discharge under the condition of climate change and Best Management Practices (BMPs), which is one of the reduction methods for non-point source pollution. Soil and Water Assessment Tool (SWAT) model is applied to case in Cheongmicheon watershed. The coefficients required for SWAT model were calibrated using SWAT Calibration and Uncertainty Program. Climate change is considered by using Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5. It is known from simulation results that the non-point source pollutant increases under the climate change scenario assuming worse condition. It is also found in this study that an appropriate application of BMPs is able to reduce the quantity and temporal variation of non-point source pollutant effectively.

Assimilation of Satellite-Based Soil Moisture (SMAP) in KMA GloSea6: The Results of the First Preliminary Experiment (기상청 GloSea의 위성관측 기반 토양수분(SMAP) 동화: 예비 실험 분석)

  • Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan;Hyun, Yu-Kyung;Ryu, Young;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

Global Ocean Data Assimilation and Prediction System 2 in KMA: Operational System and Improvements (기상청 전지구 해양자료동화시스템 2(GODAPS2): 운영체계 및 개선사항)

  • Hyeong-Sik Park;Johan Lee;Sang-Min Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2023
  • The updated version of Global Ocean Data Assimilation and Prediction System (GODAPS) in the NIMS/KMA (National Institute of Meteorological Sciences/Korea Meteorological Administration), which has been in operation since December 2021, is being introduced. This technical note on GODAPS2 describes main progress and updates to the previous version of GODAPS, a software tool for the operating system, and its improvements. GODAPS2 is based on Forecasting Ocean Assimilation Model (FOAM) vn14.1, instead of previous version, FOAM vn13. The southern limit of the model domain has been extended from 77°S to 85°S, allowing the modelling of the circulation under ice shelves in Antarctica. The adoption of non-linear free surface and variable volume layers, the update of vertical mixing parameterization, and the adjustment of isopycnal diffusion coefficient for the ocean model decrease the model biases. For the sea-ice model, four vertical ice layers and an additional snow layer on top of the ice layers are being used instead of previous single ice and snow layers. The changes for data assimilation include the updated treatment for background error covariance, a newly added bias scheme combined with observation bias, the application of a new bias correction for sea level anomaly, an extension of the assimilation window from 1 day to 2 days, and separate assimilations for ocean and sea-ice. For comparison, we present the difference between GODAPS and GODAPS2. The verification results show that GODAPS2 yields an overall improved simulation compared to GODAPS.

Analysis of the Emergency Water Supply Capacity in Agricultural Reservoirs Using K-HAS and Ratio Correction Factors (K-HAS와 비율보정 계수를 이용한 농업용 저수지의 비상연계 용수공급 가능량 분석)

  • Kim, Hayoung;Lee, Sang-Hyun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.59-71
    • /
    • 2023
  • As the frequency of drought increases due to climate change, water scarcity in agriculture would be a main issue. However, it seems difficult to solve the water scarcity by securing alternative water sources. The aim of this study is to analyze optimal water supply capacity of agricultural reservoir for emergency operation connecting reservoirs and dams. First, we simulated the water storage of agricultural reservoir playing the role emergency water supplier to other water facility such as dams and other reservoirs. In particular, the results of simulation of water storage through K-HAS model was calibrated using the optimization process based on ratio correction factors of outflow and inflow. Finally, the optimal amount of water supply securing water supply reliability in emergency interconnection operation was analyzed. The results of this study showed that Janchi reservoir could supply 12.8 thousand m3/day maintaining 90 % water supply reliability. The result of this study could suggest the standard for connecting water facilities as emergency water supply.

Numerical Simulation of the Asian Monsoon for the Mid-Holocene Using a Numerical Model (수치모델을 이용한 홀로세 중기의 아시아 몬순순환 변화 연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Park, Yoo-Min;Suk, Bong-Chool
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • The change in global climate and Asian monsoon patterns during the mid-Holocene, 6000 years before present (6 ka), is simulated by a climate model at spectral truncations of T170 with 18 vertical layers, corresponding to grid-cell sizes of roughly 75km. The present simulation is forced with the observed monthly data of sea surface temperatures, and the specified concentration of atmospheric carbon dioxide, while in the mid-Holocene experiment, orbital parameters such as obliquity, precession, and eccentricity are changed to the 6ka conditions. Under such conditions, the precipitation associated with the summer monsoon is enhanced over a wider zonal band from the Middle East to Southeast Asia, while no significant alteration takes Place in winter. The monsoonal wind also increases over the Arabian Sea, showing the enhanced southwesterly wind during summer and northeasterly wind during winter. Overall, the showing of the Asian monsoon is enhanced during the mid-Holocene, especially in summer, which is consistent with the proxy estimates and other previous model simulations.

Numerical Simulation Experiment on the Wind Ventilation Lane of the Local Circulation Winds in Daegu (대구지역의 국지적 대기순환풍의 환기경로에 관한 수치모의 실험)

  • Gu, Hyeon Suk;Kim, Hae Dong;Gang, Seong Dae
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.367-376
    • /
    • 2004
  • In urban area, thermal pollution associated with heat island phenomena is generally regarded to make urban life uncomfortable. To overcome this urban thermal pollution problem, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane, is widely practiced in many countries. In this study, the prevailing wind ventilation lane of a local winds in Daegu during the warm climate season was investigated by using surface wind data and RAMS(Reasonal Atmospheric Model System) simulation. The domain of interest is the vicinity of Daegu metropolitan city(about 900 $km^{2})$ and its horizontal scale is about 30km. The simulations were conducted under the synoptic condition of late spring with the weak gradient wind and mostly clear sky. From the numerical simulations, the following two major conclusions were obtained: (1)The major wind passages of the local circulation wind generated by radiative cooling over the mountains(Mt. Palgong and Mt. Ap) are found. The winds blow down along the valley axis over the eastern part of the Daegu area as a gravity flow during nighttime. (2)After that time, the winds blow toward the western part of Daegu through the city center. As the result, the higher temperature region appears over the western part of Daegu metropolitan area.

Air Corridor Planning Strategy based on the Wind Field and Air Corridor Simulation - A Case Study of Pan-Gyo New Town Development Area - (바람통로 예측모델링을 통한 바람통로 계획전략 - 성남판교 신도시 개발지구를 중심으로 -)

  • 황기현;송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.43-57
    • /
    • 2003
  • This paper presents the air corridor planning strategy based on simulation with MUKLMO_3 (Micro-scale Urban Climate Model) to investigate the wind field and air corridor caused by the land-use change of the New Town Development Area in Pan-Gyo. In the first part, the most frequently observed wind field in the New Town Development Area was measured and used as an initial value to simulate a more realistic wind field and air corridor. Several experiments with different initial values of wind fields were carried out to investigate the wind field change affected by the New Town Development. The results show the features of the wind field of the neutral stability condition in the urban canopy layer with a high resolution near the ground. The wind speed is weakened at this level due to the New Town Development. It was found that the wind field and air corridor are influenced by the land-use change. After the development of the New Town, the speed of the wind field decreased and the main wind directions and air corridor changed. In this study, this model is found to be a useful tool for evaluating air corridor and change of wind field in speed and direction.

Numerical Analysis of Thermal Environments and Comfort for Local Air Conditioning System (수치해석에 의한 국부냉방시스템의 온열환경 및 쾌적성 분석)

  • 엄태인;경남호;신기식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.318-328
    • /
    • 2003
  • Numerical simulation using computational fluid dynamics (CFD) is performed to calculate the velocities and temperature profiles of air in adjacent to a worker within the individual local air conditioning system. The calculation domain is the space of ㄴ between walls and a worker in the climate room. The fresh air is supplied from the three different inlets located on the right, left and center wall in the climate room. In this study, the calculated data of velocities and temperature profiles of air in the nearest the skin of a worker are used to calculate the PMV (Predicted Mean Vote) for evaluation of thermal comfort of a worker in the local air conditioning system. Because the data of veto-cities temperature profiles of air in adjacent to a worker and the PMV of a worker are the design parameters of the local air conditioning system. The results of calculation show that the fresh air velocity and injection position are closely related to the PMV value. In individual air condition system of ㄴ, the appropriate PMV are obtained when the fresh air velocity and position are 1.0 m/s, throat of a worker and are 1.5 m/s, head of a worker, respectively. The method of numerical calculation is effective to obtain the optimum velocity and position of the fresh air for optimum the PMV and energy saving in individual local air conditioning system.