• Title/Summary/Keyword: climate range test

Search Result 50, Processing Time 0.022 seconds

A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning (머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구)

  • Lee, Seung Woon;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1071-1081
    • /
    • 2021
  • In addition to the current quality control procedures for the weather observation performed by the Korea Meteorological Administration (KMA), this study proposes quality inspection standards for Internet of Things (IoT) urban weather observed data based on machine learning that can be used in smart cities of the future. To this end, in order to confirm whether the standards currently set based on ASOS (Automated Synoptic Observing System) and AWS (Automatic Weather System) are suitable for urban weather, usability was verified based on SKT AWS data installed in Seoul, and a machine learning-based quality control algorithm was finally proposed in consideration of the IoT's own data's features. As for the quality control algorithm, missing value test, value pattern test, sufficient data test, statistical range abnormality test, time value abnormality test, spatial value abnormality test were performed first. After that, physical limit test, stage test, climate range test, and internal consistency test, which are QC for suggested by the KMA, were performed. To verify the proposed algorithm, it was applied to the actual IoT urban weather observed data to the weather station located in Songdo, Incheon. Through this, it is possible to identify defects that IoT devices can have that could not be identified by the existing KMA's QC and a quality control algorithm for IoT weather observation devices to be installed in smart cities of future is proposed.

Temperature-Dependent Development of the Swallowtail Butterfly, Sericinus montela Gray

  • Hong, Seong-Jin;Kim, Sun Young;Ravzanaadii, Nergui;Han, Kyoungha;Kim, Seong-Hyun;Kim, Nam Jung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2014
  • The aim of this study is to investigate the effects of ambient thermal environments on the development of swallowtail butterflies (Sericinus montela Gray). Developmental durations and survival rates of S. montela were examined at two crucial developmental stages, embryonic and larval development, at varying temperatures ranging from $15^{\circ}C$ to $35^{\circ}C$. As expected, our results indicated that increasing temperatures decreased the developmental duration and survival rate of the eggs. However, the larvae and pupae showed maximum survival rates at $20.0^{\circ}C$ and $25.0^{\circ}C$, and the represented durations were similar to those of the eggs. Larval development was stage-specific, revealing that the fourth and fifth instars at the later stages were more susceptible to temperature variation. When considering both parameters, the optimal development of S. montela occurred within the temperature range of $20.0-25.0^{\circ}C$. The lower threshold for the complete development of S. montela from eggs to eclosion of adults was calculated at $10.6^{\circ}C$ by linear regression analysis. The estimated value is similar to that of other endemic insects distributed in temperate climate zones, which indicates that S. montela belongs to a small group of swallowtails adjusted to low ambient temperatures. From the results, we predict that the full development of S. montela could be achieved within the temperature range of $17.5-30.0^{\circ}C$. Embryonic development ceased at both test temperature extremes, and no further larval development proceeded after the third instar at $35.0^{\circ}C$. These results suggest that embryogenesis can be significantly influenced by slight variations in the ambient thermal environment that fall below the optimal range.

Elevated Temperature Treatment Induced Rice Growth and Changes of Carbon Content in Paddy Water and Soil (온도상승 환경 처리가 논토양과 용수에서 탄소량 변화와 벼 생육에 미치는 영향)

  • Hong, Sung-Chang;Hur, Seung-Oh;Choi, Soon-Kun;Choi, Dong-Ho;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • BACKGROUND: The global mean surface temperature change for the period of 2016~2035 relative to 1986~2005 is similar for the four representative concentration pathway (RCP)'s and will likely be in the range of $0.3^{\circ}C$ to $0.7^{\circ}C$. Climate change inducing higher temperature could affect not only crop growth and yield, but also dynamics of carbon in paddy field. METHODS AND RESULTS: This study was conducted to evaluate the effect of elevated temperature on the carbon dynamics in paddy soil and rice growth. In order to control the elevated temperatures, the experiments were set up as the small scale rectangular open top chambers (OTCs) of $1m(width){\times}1m(depth){\times}1m(height)$ (Type 1), $1 m(W){\times}1m(D){\times}1.2m(H)$ (Type 2), and $1m(W){\times}1m(D){\times}1.4m(H)$ (Type 3). The average temperatures of Type 1, Type 2, and Type 3 from July 15 to October 30 were higher than the ambient temperatures at $0.4^{\circ}C$, $0.5^{\circ}C$, and $0.9^{\circ}C$, respectively. For the experiment, Wagner's pots (1/2,000 area) were placed inside chambers. The pots were filled with loamy soil, and chemical fertilizer and organic compost were applied as recommended after soil test. The pots were flooded with agricultural water and rice (Shindongjin-byeo) was planted. It was observed that TOC (total organic carbon) of the water increased by the elevated temperatures and the trend continued until the late growth stage of the rice. Soil TOC contents were reduced by the elevated temperatures. C/N ratios of the rice plant decreased by the elevated temperature treatments. Thus, it was assumed that the elevated temperatures induced to decompose soil organic matter. Elevated temperatures significantly increased the culm length (P<0.01) and culm weight (P<0.05) of rice, but the number and weight of rice panicle did not showed significant differences. CONCLUSION: Based on the results, it was suggested that the elevated temperatures had an effect on changes of soil and water carbons under the possible future climate change environment.

A Study on the Compatibility of Korean Temperature Guidelines for Stockpile Material Environmental Test (저장물자 환경시험을 위한 한국적 온도기준 적합성 연구)

  • Lee, Il Ro;Byun, Kisik;Cho, Sung-Yong;Kim, Kyung Pil;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.187-194
    • /
    • 2020
  • The T&E (Test and Evaluation) results were applied for a judgment basis to decide the developmental process of system engineering for efficient weapon system R&D (Research and Development). During the OT&E (Operational Test and Evaluation) and DT&E (Development Test and Evaluation), an environmental test is essential for weapon system development owing to their highly exposed operational conditions. Based on the MIL-STD-810, MIL-HDBK-310, and AECTP 200, the ROK armed forces recommended operating temperatures for the ROK weapon system and applied this to the DT&E and OT&E. This study examined the compatibility of Korean temperature guidelines for stockpile material considering recent climate change. Moreover, this study analyzed the data from hourly measured temperatures on 101 observatories during 60 years, from 1960 to 2020, and percentage (0.5%, 1%, 5%, and 10%) and the 𝜎 (3𝜎, 2𝜎, and 1𝜎) frequency of occurrence on rigorous hot (August) and cold (January) periods, respectively. The results indicate that the highest temperature was 41℃, and the 0.5% frequency of occurrence was 37.0℃. In the case of the cold period, the lowest temperature was -32.6℃ and the 0.5% frequency of occurrence was -21.1℃. By considering the previously recommended operating temperature range for a general ground system, -30 ~ 40℃, regional operation probability is recognized 99.999%. Despite the recent abnormal climate change from global warming, the Korean temperature guidelines are compatible with the stockpile material environmental test.

The Recent Increasing Trends of Exceedance Rainfall Thresholds over the Korean Major Cities (한국의 주요도시지점 기준강수량 초과 강수의 최근 증가경향 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.117-133
    • /
    • 2014
  • In this study, we analysed impacts of the recent increasing trend of exceedance rainfall thresholds for separation of data set and different research periods using Quantile Regression (QR) approach. And also we performed significant test for time series data using linear regression, Mann-Kendall test and Sen test over the Korean major 8-city. Spring and summer precipitation was tend to significant increase, fall and winter precipitation was tend to decrease, and heavy rainy days in last 30 years have increased from 3.1 to 15 percent average. In addition, according to the annual ranking of rainfall occurs Top $10^{th}$ percentile of precipitation for 3IQR (inter quartile range) of the increasing trend, most of the precipitation at the point of increasing trend was confirmed. Quantile 90% percentile of the average rainfall 43.5mm, the increasing trend 0.1412mm/yr, Quantile 99% percentile of the average rainfall 68.0mm, the increasing trend in the 0.1314mm/yr were analyzed. The results can be used to analyze the recent increasing trend for the annual maximum value series information and the threshold extreme hydrologic information. And also can be used as a basis data for hydraulic structures design on reflect recent changes in climate characteristics.

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region (열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석)

  • Yoon, Sun-kwon;Kim, Jong-Suk;Lee, Tae-Sam;Moon, Young-IL
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.49-63
    • /
    • 2016
  • In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.

A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement (자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과)

  • Lim, Cheol-Soo;Hong, Ji-Hyung;Kim, Jeong-Soo;Lee, Jong-Tae;Lim, Yun-Sung;Kim, Sang-Kyu;Jeon, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

A Study on a Comparison of Sky View Factors and a Correlation with Air Temperature in the City (하늘시계지수 비교 및 도시기온 상관성 연구: 강남 선정릉지역을 중심으로)

  • Yi, Chaeyeon;Shin, Yire;An, Seung Man
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.

Preparation and Oxygen Permeability of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ Porous Coating Layer (다공성의 $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$가 코팅된 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막의 제조 및 투과 특성)

  • Kim, Jong-Pyo;Pyo, Dae-Woong;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ porous coating layer were prepared by extrusion and dip coating technique. XRD and SEM result showed the tubular membrane possessed the perovskite structure and porouscoating layer (thickness= about $2{\mu}m$) in surface. The oxygen permeation test was measured at condition of ambient air (feed side) and vacuum (permeate side) in the temperature range from 750 to $950^{\circ}C$. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ porous coating layer reached maximum $3.2mL/min{\cdot}cm^2$ at $950^{\circ}C$ and was higher than non-coated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane. Long-term stability test result indicated that the oxygen permeation flux was quite stable during the 11 day.

Measurement of R-134a Leakage from Vehicle Equipped Mobile Air Conditioning(MAC) System (실차를 이용한 자동차 에어컨 냉매 누출량 평가)

  • Kim, Ji Young;Seo, Chungyoul;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • CFC-12 used in mobile air conditioning(MAC) system has been replaced by R-134a, a type of HFC refrigerant, from 1991 to 1994. R-134a has since been widely used as a refrigerant of a mobile air conditioner. However, it is one of the six main green house gases listed in Kyoto Protocol, which makes it imperative to regulate its emission and develop alternative refrigerants. In this study, the concentration of leaked R-134a was measured using VT(Variable Temperature) shed and Running loss test shed to analyze the level of air conditioner refrigerant leaked in a vehicle. According to the analysis of the concentration of R-134a leaked from a vehicle parked, annual leakage amount of R-134a was in the range of 6.46~13.28 g/yr. The figure was similar with the leakage from the mobile air conditioning system currently used. In a study using the same vehicle model, a vehicle equipped with dual evaporation system had a higher leakage rate of refrigerant than a vehicle with a single evaporation system. It appears that the added fittings and joints of the dual evaporator system led to higher leakage rate. Besides, the analysis of the change in R-134a concentration under various car speed found that more refrigerant leaked under high speed(100km/hr) and but the volume of the wind did not affect to the variation of refrigerant leakage.