• Title/Summary/Keyword: climate map

Search Result 344, Processing Time 0.026 seconds

Estimation of Carbon Stock and Uptake for Larix kaempferi Lamb. (일본잎갈나무의 탄소저장량 및 흡수량 추정)

  • Kang, Jin-Taek;Son, Yeong-Mo;Yim, Jong-Su;Jeon, Ju-Hyeon
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.499-506
    • /
    • 2016
  • This study was conducted to estimate carbon stock and uptake for Larix kaempferi Lamb., the single species, which is the most widely distributed one following Pinus densiflora, using data from 6th national forest inventory and forest type map of 1:5,000. Overall distribution area of Larix kaempferi in South Korea was shown as 272,800ha, in detail, Gangwon-do was the most widely distributed region with 39.6% (108,141 ha) of the whole forest area, and Gyeongsangbuk-do was 18.6%(50,839 ha), Chungcheongbuk-do was 15.1%(41,205ha) in order. As the results of analysis in carbon stock and uptake for each province, the values were high with Gyeonggi-do 109.0 tC/ha, $10.3tCO_2/ha/yr$, Gangwon-do 349.1 tC/ha, $9.7tCO_2/ha/yr$ in order, and Jeollabuk-do was the lowest with 78.3 tC/ha, $7.6tCO_2/ha/yr$. Also, the results of estimation in total carbon stocks and uptakes by year (1989~2015) were turned out that total carbon stocks and uptakes were 24,891 thousand tC, $2,428thousand\;tCO_2$ in 2015, increasing about 4.8 times and 3.8 times each compared with 5,238 thousand C/ha, $640thousand\;CO_2$ in 1989. Although forest area was decreased 26.6% with 371,884 ha in 1989 to 272,800 ha in 2015, carbon stocks and uptakes were increased in 2015 in that forest stock was increased 126% compared to 1989.

Land Suitability Assessment by Combining Classification Results by Climate and Soil Information Using the Most Limiting Characteristic Method in the Republic of Korea (기후 및 토양 정보에서 최대저해인자법을 이용한 재배적지 구분의 통합에 관한 연구)

  • Kim, Hojung;Shim, Kyomoon;Hyun, Byungkeun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • Land suitability assessment for apples and pears was conducted with soil and climate information in South Korea. In doing so, we intended to preserve land and increase the productivity by providing valuable information regarding where more suitable areas for apples or pears are located. We used soil classification driven by soil environmental information system developed by National Institute of Agricultural Science, RDA, and also used climate classification in digital agro-climate map database for which is made by National Institute of Horticultural and Herbal Science. We combined both soil and climate classification results using a most-limiting characteristic method. The combined results showed very similar patterns with the results by classification based on soil information. Such results seem to come from the fact that the classification results by soil relatively lower than those by climate information. The results by soil classification seem to be too downgraded and checking if the final classification ranges in soil are reasonably made is strongly required. Although the most limiting characteristic method had been used widely in land suitability assessment, adapting the method based on results by soil and climate can be influenced by one downgraded factor. Therefore, alternative ways should be carefully considered for increasing the accuracy.

Classification of Local Climate Zone by Using WUDAPT Protocol - A Case Study of Seoul, Korea - (WUDAPT Protocol을 활용한 Local Climate Zone 분류 - 서울특별시를 사례로 -)

  • Kim, Kwon;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.131-142
    • /
    • 2017
  • This study aims to create a Local Climate Zone(LCZ) map of Seoul by using World Urban Database and Access Portal Tools(WUDAPT) protocol, and to analyze the characteristics of the Seoul LCZs. For this purpose, training samples of 17 LCZ types were collected by using Landsat images and Google Earth. LCZ Classification and Filtering were performed by SAGA GIS. An ArcGIS was used to analyze the characteristics of each LCZ type. The characteristics of the LCZ types were analyzed by focusing on building surface fraction ratio, impervious surface fraction ratio, pervious surface fraction ratio, building stories and air temperature. The results show that one filtering was found to be most appropriate. While Yangcheongu and Yeongdeungpogu with the higher annual and maximum mean air temperature than other areas have the higher rate of LCZ 3(compact low-rise) and LCZ 4(open high-rise), Jongnogu, Eunpyeonggu, Nowongu and Gwanakgu with the lower value have the higher rate of LCZ A(Dence trees). The values of building surface fraction ratio, impervious surface fraction ratio and building stories of each LCZ were included in the range of WUDAPT for most LCZs. However, the values of pervious surface fraction ratio were out of the range, in particular, in the LCZs 4~6 and 9~10. This study shows the usability and applicability of the WUDAPT methodology and its climate zone classification used in many countries as a basic data for the landscape planning and policy to improve the thermal environment in urban areas.

A Study on Estimation of Levee Safety Map for Determining the Priority of River Maintenance (하천 유지관리 우선순위 결정을 위한 제방안전도맵 산정방법 연구)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • Owing to recent climate change, the scale of rainfall tends to increase gradually and the risk of flooding has increased. Therefore, the importance of improving the levee management and disaster response is increasing. Levee management in Korea is carried out at the level of damage recovery after the occurrence of damage. Therefore, it is necessary to develop a technology for predicting and managing the levee safety with proactive river management. In this study, a method to estimate the safety against erosion and overflow was suggested. A map of levee safety that can be used as basic data is presented by displaying the levee safety on the map. The levee erosion safety was calculated as the ratio of the internal and external force for each shore type. The levee overflow safety was calculated as the ratio of the maximum conveyance and design flood. The maximum conveyance was a discharge when the level of the river was equal to the level of the levee crown. The levee safety was classified into 5 grades: very safe, safe, normal, dangerous, and very dangerous. As a research area from downstream of Nam River Dam to Nakdong River Junction, the levee safety against erosion and overflow was estimated for all levees and all cross-sections of the river. The levee safety was displayed on a map using GIS. Through the levee safety map as a result of this study, the levee safety can be observed intuitively. Using the levee safety map, a maintenance plan for a river can be easy to build. This levee safety map can be used to help determine the priority of investment for efficient budget used.

Estimating the Monthly Precipitation Distribution of North Korea Using the PRISM Model and Enhanced Detailed Terrain Information (PRISM과 개선된 상세 지형정보를 이용한 월별 북한지역 강수량 분포 추정)

  • Kim, Dae-jun;Kim, Jin-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • The PRISM model has been used to estimate precipitation in South Korea where observation data are readily available at a large number of weather station. However, it is likely that the PRISM model would result in relatively low reliability of precipitation estimates in North Korea where weather data are available at a relatively small number of weather stations. Alternatively, a hybrid method has been developed to estimate the precipitation distribution in area where availability of climate data is relatively low. In the hybrid method, Regression coefficients between the precipitation-terrain relationships are applied to a low-resolution precipitation map produced using the PRISM. In the present study, a hybrid approach was applied to North Korea for estimation of precipitation distribution at a high spatial resolution. At first, the precipitation distribution map was produced at a low-resolution (2,430m) using the PRISM model. Secondly, a deviation map was prepared calculating difference between altitudes of synoptic stations and virtual terrains produced using 270m-resolution digital elevation map (DEM). Lastly, another deviation map of precipitation was obtained from the maps of virtual precipitation produced using observation data from the synoptic weather stations and both synoptic and automated weather station (AWS), respectively. The regression equation between precipitation and terrain was determined using these deviation maps. The high resolution map of precipitation distribution was obtained applying the regression equation to the low-resolution map. It was found that the hybrid approach resulted in better representation of the effects of the terrain. The precipitation distribution map for the hybrid approach had similar spatial pattern to that for the existing method. It was estimated that the mean annual cumulative precipitation of entire territory of North Korea was 1,195mm with a standard deviation of 253mm.

Spatial Upscaling of Aboveground Biomass Estimation using National Forest Inventory Data and Forest Type Map (국가산림자원조사 자료와 임상도를 이용한 지상부 바이오매스의 공간규모 확장)

  • Kim, Eun-Sook;Kim, Kyoung-Min;Lee, Jung-Bin;Lee, Seung-Ho;Kim, Chong-Chan
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.455-465
    • /
    • 2011
  • In order to assess and mitigate climate change, the role of forest biomass as carbon sink has to be understood spatially and quantitatively. Since existing forest statistics can not provide spatial information about forest resources, it is needed to predict spatial distribution of forest biomass under an alternative scheme. This study focuses on developing an upscaling method that expands forest variables from plot to landscape scale to estimate spatially explicit aboveground biomass(AGB). For this, forest stand variables were extracted from National Forest Inventory(NFI) data and used to develop AGB regression models by tree species. Dominant/codominant height and crown density were used as explanatory variables of AGB regression models. Spatial distribution of AGB could be estimated using AGB models, forest type map and the stand height map that was developed by forest type map and height regression models. Finally, it was estimated that total amount of forest AGB in Danyang was 6,606,324 ton. This estimate was within standard error of AGB statistics calculated by sample-based estimator, which was 6,518,178 ton. This AGB upscaling method can provide the means that can easily estimate biomass in large area. But because forest type map used as base map was produced using categorical data, this method has limits to improve a precision of AGB map.

Construction of Multi-purpose Hazard Information Map Based on Digital Image Using Geospatial Information (지형공간정보를 활용한 수치영상기반의 다목적 재해정보지도 구축)

  • Yun, Hee-Cheon;Min, Kwan-Sik;Kim, Min-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.91-101
    • /
    • 2010
  • As global warming has caused the number of abnormal changes in climate to increase throughout the world, much damage has occurred recently in Korean Peninsula which results from unexpected heavy rains, landslides, and floods from typhoons. To prevent and cope with these annually repeated natural hazards, the overall improvements are needed, including systematic management of the existing natural hazard information and improvement of hazard information. In this study, multi-purpose hazard information map based on digital image was constructed as an effective way to enhance hazard management considering regional characteristics and hazard response capabilities in the field. Multi-purpose hazard information map with a new concept by fusion of geospatial information and hazard attribute information is able to support quick decision for hazard management making and development of hazard information system.

Publishing a Web Based Crop Monitoring System and Performance Test (웹 기반 농업생산환경 모니터링 시스템 시범구축 및 성능평가)

  • Lee, Jung-Bin;Kim, Jeong-Hyun;Park, Yong-Nam;Hong, Suk-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.491-499
    • /
    • 2015
  • In developed countries such as USA and Europe, agricultural monitoring system is developed and utilized in various fields in order to predict crop yield, observe weather conditions and anomaly, categorize crop fields, and calculate areas for each crop. These system is Web Map Service(WMS) which utilizes open source and commercial softwares, and various information collected from remote sensing data are provided. This study will utilize tools such as GeoServer, ArcGIS Server, which are widely used to monitor agricultural production, to publish Map Server and Web Application Server. This enables performance test study for future agricultural production monitoring system by making use of response time and data transfer test. When tested in identical condition GeoServer showed a better result in response time and data transfer for performance test.

Estimation of Reference Wind Speeds in Offshore of the Korean Peninsula Using Reanalysis Data Sets (재해석자료를 이용한 한반도 해상의 기준풍속 추정)

  • Kim, Hyun-Goo;Kim, Boyoung;Kang, Yong-Heack;Ha, Young-Cheol
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.