• Title/Summary/Keyword: climate data

Search Result 3,672, Processing Time 0.026 seconds

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.

Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula (한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교)

  • Lee, Sanghee;Kim, Jhoon;Cho, Hi-Ku;Goo, Tae-Young;Ou, Mi-Lim;Lee, Jong-Ho;Yokota, Tatsuya
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • With the global scale impact of atmospheric $CO_2$ in global warming and climate system, it is necessary to monitor the $CO_2$ concentration continuously on a global scale, where satellite remote sensing has played a significant role recently. In this study, global monthly $CO_2$ concentrations obtained by satellite remote sensing were compared with ground-based measurements at Anmyeon-do and Gosan Korean Global Atmosphere Watch Center. Atmospheric $CO_2$ concentration has increased from 371.87 ppm in January 1999 to 405.50 ppm in December 2013 at Anmyeon-do station (KMA, 2013). Comparison of the continuous measurements by flask air sampling at Anmyeon-do shows the same trend and seasonal variations with those of global monthly mean dataset. Nevertheless, the trends of $CO_2$ over Northeast Asia showed the higher than those of global and the trends also changes with different slope. $CO_2$ products derived from Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) were compared with ground-based measurement at Anmyeon-do. The monthly mean values of GOSAT and AIRS data are systemically lower than those obtained at Anmyeon-do, however, the seasonal cycle of satellite products present the similar trend with values of global and Anmyeon-do. The accuracy of $CO_2$ products from GOSAT and AIRS were evaluated statistically for two years from January 2011 to December 2012. GOSAT showed good correlation with the correlation coefficient, RMSD and bias of 0.947, 5.610 and -5.280 to ground-based measurements respectively, while AIRS showed reasonable comparison with 0.737, 8.574 and -7.316 at Anmyeon-do station, respectively.

Prediction of Radish Growth as Affected by Nitrogen Fertilization for Spring Production (무의 질소 시비량에 따른 생육량 추정 모델식 개발)

  • Lee, Sang Gyu;Yeo, Kyung-Hwan;Jang, Yoon Ah;Lee, Jun Gu;Nam, Chun Woo;Lee, Hee Ju;Choi, Chang Sun;Um, Young Chul
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.531-537
    • /
    • 2013
  • The average annual and winter ambient air temperatures in Korea have risen by 0.7 and $1.4^{\circ}C$, respectively, during the last 30 years. Radish (Raphanus sativus), one of the most important cool season crops, may well be used as a model to study the influence of climatic change on plant growth, because it is more adversely affected by elevated temperatures than warm season crops. This study examined the influence of transplanting time, nitrogen fertilizer level, and climate parameters, including air temperature and growing degree days (GDD), on the performance of a radish cultivar 'Mansahyungtong' to estimate crop growth during the spring growing season. The radish seeds were sown from April 24 to May 22, 2012, at internals of 14 days and cultivated with 3 levels of nitrogen fertilization. The data from plants sown on April 24 and May 8, 2012 were used for the prediction of plant growth as affected by planting date and nitrogen fertilization for spring production. In our study, plant fresh weight was higher when the radish seeds were sown on $24^{th}$ of April than on $8^{th}$ and $22^{nd}$ of May. The growth model was described as a logarithmic function using GDD according to the nitrogen fertilization levels: for 0.5N, root dry matter = 84.66/(1+exp (-(GDD - 790.7)/122.3)) ($r^2$ = 0.92), for 1.0N, root dry matter = 100.6/(1 + exp (-(GDD - 824.8)/112.8)) ($r^2$ = 0.92), and for 2.0N, root dry matter = 117.7/(1+exp (-(GDD - 877.7)/148.5)) ($r^2$ = 0.94). Although the model slightly tended to overestimate the dry mass per plant, the estimated and observed root dry matter and top dry matter data showed a reasonable good fit with 1.12 ($R^2$ = 0.979) and 1.05 ($R^2$ = 0.991), respectively. Results of this study suggest that the GDD values can be used as a good indicator in predicting the root growth of radish.

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea (최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측)

  • Kim, Sukyung;Kim, Tae Kyung;Yoon, Sukhee;Jang, Keunchang;Lim, Hyemin;Lee, Wi Young;Won, Myoungsoo;Lim, Jong-Hwan;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.322-340
    • /
    • 2021
  • Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.

The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul (서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구)

  • Choi, Jiyoung;Oh Jongmin;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • The ecosystem and landscape conservation areas of Seoul were designated according to the Natural Environment Conservation Act and the Natural Environment Conservation Ordinance. With the adoption of the "Rapid Assessment of Wetland Ecosystem Service (RAWES)" approach and the "wetland ecosystem service" for the Ramsar Wetland City Accreditation at the 13th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands in 2018, the need for data evaluating wetland ecosystem services has become a necessity. Therefore, in this study, we selected five wetlands from the ecosystem and landscape conservation areas in Seoul, having high ecological conservation values, and evaluated their carbon sequestration and economic value assessment using the InVEST model, which is an ecosystem service evaluation technique. The evaluation results for carbon storage in each wetland are as follows: Tancheon Wetland: 3,674.62 Mg; Bamseom Island in the Hangang River: 1,511.57 Mg; Godeok-dong Wetland: 5,007.21 Mg; Amsa-dong Wetland: 7,108.47 Mg; and Yeouido Wetland: 290.27 Mg. Particularly, the Tancheon Wetland showed the lowest carbon sequestration of 1,130.37 Mg, as compared to the results acquired in 2013, of 4,804.99 Mg. When the average effective carbon rate of $16.06 (US) was applied to the decreased carbon sequestration value, a loss of $15,910.58(US) was calculated. Furthermore, if the average social cost of carbon ($204 (US)) is considered, which includes the impact of climate change on productivity and ecosystems, the total loss is equivalent to $202,101.97 (US). This study aims to examine the natural resource value of urban wetlands by evaluating selected major wetlands in Seoul. This study can be utilized as basic data to plan for the protection and management of the ecosystem and landscape conservation areas. Additionally, because wetland value assessment is considered essential, the results of this study can be used in future research to provide measures for evaluating ecosystem services in the Ramsar Wetland City Certification System. Moreover, this study can be utilized for selecting important wetlands as Ramsar sites, and to raise awareness about the significance of conserving urban wetlands, and for expanding international exchange among the Ramsar Wetland sites.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.

Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns (경과기온 양상에 따른 신고 배의 지역별 개화예측모델 평가)

  • Kim, Jin-Hee;Yun, Eun-jeong;Kim, Dae-jun;Kang, DaeGyoon;Seo, Bo Hun;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.268-278
    • /
    • 2020
  • Flowering time has been put forward due to the recent abnormally warm winter, which often caused damages of flower buds by late frosts persistently. In the present study, cumulative chill unit and cumulative heat unit of Niitaka pear, which are required for releasing the endogenous dormancy and for flowering after breaking dormancy, respectively, were compared between flowering time prediction models used in South K orea. Observation weather data were collected at eight locations for the recent three years from 2018-2020. The dates of full bloom were also collected to determine the confidence level of models including DVR, mDVR and CD models. It was found that mDVR model tended to have smaller values (8.4%) of the coefficient of variation (cv) of chill units than any other models. The CD model tended to have a low value of cv (17.5%) for calculation of heat unit required to reach flowering after breaking dormancy. The mDVR model had the most accurate prediction of full bloom during the study period compared with the other models. The DVR model usually had poor skills in prediction of full bloom dates. In particular, the error of the DVR model was large especially in southern coastal areas (e.g., Ulju and Sacheon) where the temperature was warm. Our results indicated that the mDVR model had relatively consistent accuracy in prediction of full bloom dates over region and years of interest. When observation data for full bloom date are compiled for an extended period, the full bloom date can be predicted with greater accuracy improving the mDVR model further.