• Title/Summary/Keyword: climate change)

Search Result 6,508, Processing Time 0.028 seconds

An Analysis of Termite(R. speratus kyushuensis) Damage to Nationally Designated Wooden Architectural Heritage in Korea (국가지정 목조건축문화재의 흰개미(R. speratus kyushuensis) 피해 현황 분석)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Termites are a group of social insects that are one of the primary causes of damage to wooden architectural heritage. Since termite damage impairs the authenticity and structural stability of cultural heritage, it is imperative to prevent it. This study examines the extent of termite damage to wooden architectural heritage as part of efforts to prevent termite damage to nationally designated wooden architectural heritage sites across the country. The extent of termite damage to each cultural heritage was assessed qualitatively and quantitatively and comparatively analyzed by region using the results of the "Investigation on Biological Damage to Wooden Architectural Heritages" conducted by the National Research Institute of Cultural Heritage from 2016 to 2019. It involved 362 nationally designated wooden architectural heritages(25 national treasures, 157 treasures, 180 national folklore cultural heritages) and 1,104 buildings. The results were as follows: termite detection dogs reacted at 317(87.6%) of the 362 wooden heritages, with visible termite damage observed in 185 cases(51.1%). Furthermore, termite damage was confirmed using one of two methods(detection dogs or visual inspection) in 324 cases(89.5%). Of the 1,104 buildings, termite detection dogs reacted at 668(60.5%), while 339(30.7%) showed visible termite damage. Employing one of the two methods, damage was confirmed in 702 buildings(63.6%). The country was categorized into nine regions(Seoul Metropolitan Area, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, Gyeongnam, and Jeju) to examine the termite damage rate and the degree of damage to each cultural heritage according to location. Termite detection dogs reacted to more than 70% of the cultural heritage in all regions. Visible damage was minimal in the Seoul metropolitan area(32.1%) and Gangwon(21.4%) but severe in Chungnam(65.6%), Jeonnam(67.3%), and Gyeongnam(68.2%). By quantifying the degree of termite damage of each cultural heritage as a ratio of the absence of termite damage among the total absence, the average termite damage of the cultural heritage across the country was 9.2%. Regional variance analysis showed that the cultural heritage in Jeonbuk and Jeonnam showed a statistically significantly higher degree of termite damage than the cultural heritage in the Seoul metropolitan area, Chungbuk, and Gyeongbuk. This paper comprehensively analyzed termite damage to nationally designated wooden architectural heritage. The findings are expected to be valuable in establishing policies for the preservation and management of cultural heritage sites in the future.

Development of Smart Digital Agriculture Technology for Food Crop Production in Korea-The Path Forward Based on Expert Feedback (식량작물 생산에 대한 스마트디지털 농업기술의 발전 방향 - 전문가 설문조사 연구)

  • Song, Ki Eun;Jung, Jae Gyeong;Cho, Seungho;Kim, Jae Yoon;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Building self-sustainable rural infrastructure and environment through smart digital agriculture technology innovation is one of the major goals of the Korean agricultural administration as a part of the nation's 4th industry revolution. To identify areas for improving and effectively investing in the acceleration of rural development, 207 experts in the areas of crop science and smart digital agriculture technology were interviewed for their opinions and suggestions on 22 questions designed to recognize fundamental agricultural issues to be addressed and solutions to advance technology innovation and rural development. Majority of the participants expected smart digital agriculture technologies to resolve major agricultural issues and help build a better rural environment. To overcome technology gaps and resolve issues more effectively, further investment in training new technology experts and building stronger agricultural technology infrastructure is urgent, and persistent and systematic support from agricultural administration appears to be the key for accelerating the process. While the leading global groups of both public and private sectors have advanced their technologies beyond the field application stage, most of the Korean technologies remain at the early pilot stage. Aging population and lack of labor in rural areas, unknown future climate change, and challenges in sustainable rural development are expected to be resolved by smart digital agriculture technologies. Technological innovations by research institutes should be promptly deployed in the crop production field, and farm training systemically organized by local technology centers can accelerate farming revolution. Standardization of equipment and data systems is another key to the success of digitalization of food crop production and food supply chains nationwide.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

Spatial Distribution of Macrobenthic Communities on the Rocky Intertidal Zone of Specified Islands, Southern Coast of Korea (남해안 특정도서 암반조간대의 대형저서동물 군집의 공간분포)

  • Yang, Sehee;Yang, Hyosik;Lee, Changil;Seo, Chonghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.853-865
    • /
    • 2022
  • In this study, from August to October 2019, we conducted a survey of the spatial distribution and dominant species of macrobenthos on the rocky intertidal zones of 38 specified islands distributed along the southern coast of Korea. On the basis of observation made using 50 × 50 cm quadrats, we identified a total of 80 species, among which, Mollusca were the most abundant fauna, with 54 species that accounted for 67.4% of the total, followed by Crustacea with 15 species (18.7%). The recorded numbers of Cnidaria, Porifera, and Echinodermata species ranged from 1 to 6. In terms of the regional patterns of species richness, specified islands in Yeosu were found to be the most species rich, supporting 61 species, whereas islands in Hadong, Namhae, and Chujado were found to have a similar level of species richness, ranging from 42 to 46 species. Islands in Boseong and Goheung were home to the fewest species, with only 29 species being recorded. At the sampling station scale, we noted a considerable difference in faunal richness, ranging from 6 (St. 6) to 33 (St. 20) species. Among the recorded species, Echinolittorina radiata was identified as the dominant species on 15 specified islands, with the next most abundant species being Tetraclita japonica, considered an indicator species of climate change, which was recorded on 11 islands. In terms of frequency, E. radiata, found on 36 islands, was identified as the most frequently occurring species, followed by Reishia clavigera (30 islands), Mytilisepta virgata (29), Nerita japonica (28), Ligia. exotica (27), and Littorina brevicula (26). Of the 80 species identified, 9, 4, and 2 species of Mollusca, Crustacea, and Cnidaria, respectively, are classified as Marine fauna of accepted foreign export, whereas 50 are Red List species, 44 are species of Least Concern, 3 are Data Deficient species, and 1 species was not evaluated. However, during the survey, we found no Near Threatened or Not Applicable species. On the basis of the findings of this survey, it would appear that the abundance and richness of macrobenthic fauna inhabiting the rocky intertidal zones of specified islands along the southern coast of Korea differ according to different habitat conditions, particularly with respect to the duration of exposure and the extent and properties of the substrata. The findings of this study will provide baseline data for future monitoring and management of specified islands in Korea.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Analysis of Contribution to Net Zero of Non-Urban Settlement - For Green Infrastructure in Rural Areas - (비도시 정주지의 탄소중립 기여도 분석 - 농촌지역 그린인프라를 대상으로 -)

  • Lee, Dong-Kyu;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • This study was conducted to provide basic data that can be used when establishing Net Zero policies and implementation plans for non-urban settlements by quantitatively analyzing the Net Zero contribution to green infrastructure in rural areas corresponding to non-urban settlements. The main purpose is to first, systematize green infrastructure in rural areas, secondly derive basic units for each element of green infrastructure, and thirdly quantify and present the impact on Net Zero in Korea using these. In this study, CVR(Content Validity Ration) analysis was performed to verify the adequacy of green infrastructure elements in rural areas derived through research and analysis of previous studies, is as follows. First, Hubs of Green infrastructure in rural area include village forests, wetlands, farm land, and smart farms with a CVR value of .500 or higher. And Links of Green infrastructure in rural area include streams, village green areas, and LID (rainwater recycling). Second, the basic unit for each green infrastructure element was presented by classifying it into minimum, maximum, and median values using the results of previous studies so that it could be used for spatial planning and design for Net Zero. Third, when Green infrastructure in rural areas is applied to non-urban settlements in Korea, it is analyzed that it has the effect of indirectly reducing CO2 by at least 70.76 million tons and up to 141.16 million tons. This is 3.4 to 6.7 times the amount of CO2 emission from the agricultural sector in 2019, and it can be seen that the contribution to Net Zero is very high. It is expected to greatly contribute to the transformation of the ecosystem. This study quantitatively presented the carbon-neutral contribution to settlements located in non-urban areas, and by deriving the carbon reduction unit for each element of green infrastructure in rural areas, it can be used in spatial planning and design for carbon-neutral at the village level. It has significance as a basic research. In particular, the basic unit of carbon reduction for each green infrastructure factors will be usable for Net Zero policy at the village level, presenting a quantitative target when establishing a plan, and checking whether or not it has been achieved. In addition, based on this, it will be possible to expand and apply Net Zero at regional and city units such as cities, counties, and districts.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Science and Technology ODA Promotion of Korea through ICT of Global Problem Solving Centers -Suggestion on the mid- and short-term projects promotion of science and technology ODA roadmap- (글로벌문제해결거점 ICT화를 통한 한국형 과학기술 ODA 추진 -과학기술 ODA 중·단기 과제 추진에 대한 제언-)

  • Jung, Woo-Kyun;Shin, Kwanwoo;Jeong, Seongpil;Park, Hunkyun;Park, Eun Sun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.162-171
    • /
    • 2021
  • The Korean government proposed the K-SDGs in 2019 to promote the UN SDGs, but the role and tasks of science and technology, an important means of implementing the SDGs, have not been materialized. Accordingly, the role of science and technology ODA for the SDGs was established through the Ministry of Science and ICT's policy research project 'Science and Technology ODA Promotion Roadmap for Spreading the New Southern Policy and Realizing the 2030 SDGs'. In addition, goals, strategies, and core tasks for the next 10 years were derived in 10 fields such as water, climate change, energy, and ICT. In this paper, we analyze 30 key tasks of the ODA promotion roadmap for science and technology for the realization of SDGs, and propose mid- and short-term tasks and implementation plans for effective roadmap promotion. Among the key tasks in each field, four common elements were derived: ICT/smartization, a global problem-solving center, cooperation/communication platform, and business model/startup support platform/living lab that can create and integrate roadmap implementation conditions. In addition, the four mid- and short-term tasks, 1) Establishment of science and technology ODA network, 2) Establishment of living lab business platform linked to start-up support business, 3) Local smartization of recipient countries, and 4) Expand and secure sustainability of global problem-solving centers, were set in relation to the implementation of the detailed roadmap. For the derived mid- and short-term tasks, detailed implementation plans based on the ICTization of global problem-solving centers were presented. The implementation of the mid- and short-term tasks presented in this paper can contribute to the more effective achievement of the science and technology ODA roadmap, and it is expected that Korea's implementation of SDGs will also achieve high performance.

Characteristics of Environmental Factors and Vegetation Community of Zabelia tyaihyonii (Nakai) Hisauti & H.Hara among the Target Plant Species for Conservation in Baekdudaegan (백두대간 중점보전종인 댕강나무의 식생 군집 및 환경인자 특성)

  • Kim, Ji-Dong;Lee, Hye-Jeong;Lee, Dong-Hyuk;Byeon, Jun Gi;Park, Byeong Joo;Heo, Tae-Im
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.201-223
    • /
    • 2022
  • Currently, species extinctions are increasing due to climate change and continued anthropogenic impact. We selected 300 species for conservation with emphasis on plants co-occurring in the Baekdudaegan area, which is a large ecological axis of Korea. We aimed to investigate the vegetation community and environmental characteristics of Zabelia tyaihyonii in the limestone habitat among the target plant species in the Baekdudaegan region to derive effective conservation strategies. In Danyang-gun, Yeongwol-gun, and Jecheon-si, we selected 36 investigation sites where Z. tyaihyonii was present. We investigated the vegetation, flora, soil and physical environment. We also found notable plants such as Thalictrum petaloideum, Sillaphyton podagraria, and Neillia uekii at the investigation sites. We classified forest vegetation community types into 4 vegetation units and 7 species group types. With canonical correspondence analysis (CCA) of the vegetation community and habitat factors, we determined the overall explanatory power to be 75.2%, and we classified the environmental characteristics of the habitat of Z. tyaihyonii into a grouping of three. Among these, we detected a relationship between the environmental factors elevation, slope, organic matter, rock ratio, pH, potassium, and sodium. We identified numerous rare and endemic plants, including Thalictrum petaloideum, in the investigation site, and determined that these groups needed to be preserved at the habitat level. In the classification of the vegetation units analyzed based on the emerging plants and the CCA, we reaffirmed the uniqueness and specificity of the vegetation community in the habitat of Z. tyaihyonii. We anticipate that our results will be used as scientific evidence for the empirical conservation of the native habitats of Z. tyaihyonii.